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1. 일정 
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2. Program

Time Title Speaker

09:00 ~ 09:10 Opening 
Prof. Hoi-Jun Yoo, 

KAIST

09:10 ~ 09:40
(PIM) Advances and Trends on 

Compute-in-Memory based 
Accelerator Designs

Prof. Jae-Sun Seo, 
Arizona State University

09:40 ~ 10:10
(PIM) Mixed-Signal and Digital 

Memory-Centric Computing

Prof. BongJin Kim, 
University of California 

Santa Barbara

10:10 ~ 10:40
(PIM) iMCU: A 730- J/Classification μ
Digital In-Memory Computing-based 

Microcontroller Unit for Edge TinyML

Prof. MinGoo Seok, 
Columbia University

10:40 ~ 11:10
(Architecture) Energy Efficient Deep 
Learning Algorithm - Architecture 

Co-Optimization

Prof. Hun Seok Kim, 
University of Michigan

11:10 ~ 11:40

(Architecture) Disrupting Processor 
Architecture with Non-invasive 

Near-Data Processing: DNN Training 
Case Study

Prof. GwangSun Kim, 
POSTECH 

11:40 ~ 12:10 (Interface) Energy Proportional Link
Prof. WooSeok Choi, 

SNU



접수방법 및 기간3. 
링크 홈페이지 상단 인력양성  1) : https://ai-pim.org/ → →

프로그램 선택 신청하기 이름 소속 연락처 입력 제출          /E-mail/ /→ → 
기간 월 일 일 까지 2) : 04 23 ( ) 18:00 

특강 포스터 4. 



연사별 강의 요약문5. 
 1) Advances and Trends on Compute-in-Memory based Accelerator   
    Designs

Jae-Sun Seo, Cornell University

Abstract

Artificial intelligence (AI) algorithms have intensive computation and memory 
requirements. To efficiently accelerate complex AI algorithms, a number of custom 
application-specific integrated circuits (ASIC) chip designs have been demonstrated. 
Many of such AI accelerators have separate memory (e.g. SRAM) and compute 
engines (e.g. systolic array of processing elements), and thus have shown that 
accessing memory is the biggest bottleneck for energy-efficient AI inference, 
loading data from embedded SRAM memory and moving them to where 
computing actually occurs. Conventional SRAMs require row-by-row access to load 
the weights and communicate them to physically-separate compute engines, which 
limits the parallelism and dissipates a large amount of read/write energy for AI 
work- loads.

To address this limitation, compute-in-memory (CIM) technique has been proposed 
to embed computation inside the memory architecture, effectively reducing the 
on-chip memory access and communication cost. These include SRAM, non-volatile 
memory (NVM), and DRAM/HBM based in-/near-memory computing schemes. 
Many analog CIM works started to demonstrate macro-level energy and area 
benefits while being susceptible to variability, and recently digital CIM works also 
garnered interest due to the elimination of analog-to-digital converters (ADCs) and 
higher robustness against variability while consuming more area. Using both analog 
and digital CIM macros, accelerator systems that integrate many CIM macros have 
been presented in the literature. This talk will present such advances and recent 
trends on compute-in-memory based accelerator designs, including analog vs. 
digital CIMs, CIMs that support fixed-point vs. floating-point precision, and 
trade-offs of SRAM vs. NVM vs. DRAM/HBM based in-/near-memory computing.



 2) Mixed-Signal and Digital Memory-Centric Computing

Bongjin Kim

University of California Santa Barbara (UCSB)

Abstract
Recent advancements in the development of memory-centric computing macros 
and processors enabled the energy-efficient acceleration of deep learning (DL) with 
lower-precision mixed-signal integer multiply-and-accumulate (MAC) operations. 
However, their applications were limited to tiny DL inferences on edge devices 
with lower accuracy requirements. In this talk, we will present our recent research 
efforts toward robust and reconfigurable memory-centric computing to overcome 
the limitations of prior mixed-signal compute-in-memory approaches. Besides the 
processing of DL, we will also introduce our recent research projects on 
memory-centric computing for solving challenging combinatorial optimization 
problems.



 3) iMCU: A 730- J/Classification Digital In-Memory Computing-based  μ
    Microcontroller Unit for Edge TinyML

MinGoo Seok, Columbia University

Abstract
TinyML envisions performing a deep neural network (DNN)-based inference on an 
edge device, which makes it paramount to create a neural microcontroller unit 
(MCU). Toward this vision, some of the recent MCUs integrated in-memory 
computing (IMC) based accelerators. However, they employ analog-mixed-signal 
(AMS) versions, exhibiting limited robustness over process, voltage, and 
temperature (PVT) variations. They also employ a large amount of IMC hardware, 
which increases silicon area and cost. Also, they do not support a practical 
software dev framework such as TensorFlow Lite for Microcontrollers (TFLite-micro). 
Because of this, those MCUs did not present the performance for the standard 
benchmark MLPerf-Tiny, which makes it difficult to evaluate them against the 
state-of-the-art neural MCUs. In this paper, we present iMCU, the IMC-based MCU 
in 28nm, which outperforms the current best neural MCU (SiLab’s xG24-DK2601B) 
by 88X in energy-delay product (EDP) while performing MLPerf-Tiny. Also, iMCU 
integrates a digital version of IMC hardware for maximal robustness. We also 
optimize the acceleration targets and the computation flow to employ the least 
amount of IMC hardware yet still enable significant acceleration. As a result, 
iMCU’s total area is only 2.03 mm2 while integrating 433KB SRAM and 32KB IMC 
SRAM.  



 4) Energy Efficient Deep Learning Algorithm Architecture           – 
    Co-Optimization

Hun Seok Kim, University of Michigan

Abstract
This talk presents holistic approaches to realize energy-optimized machine-learning 
(ML) algorithms, VLSI architectures/accelerators and systems. The optimized system 
integration is a major challenge in machine-learning systems. A truly 
energy-optimal ML-IoT solution is attainable only by a cross-layer optimization that 
requires a full characterization of the complete end-to-end system. Addressing this 
critical technical challenge in emerging ML-IoT applications, a cross-layer 
interdisciplinary research that spans deep learning algorithms and VLSI hardware 
architecture will be discussed in this talk. 

Recent advances in model pruning have enabled sparsity-aware deep neural 
network accelerators that improve the energy-efficiency and performance of 
inference tasks. This talk introduces a novel transform-domain (TD) neural network 
accelerator in which convolution operations are replaced by element-wise 
multiplications with sparse-orthogonal weights. It employs an output stationary 
dataflow coupled with an energy-efficient memory organization to reduce the 
overhead of sparse-orthogonal TD kernels that are concurrently processed without 
any conflicts. Weights in the proposed architecture are non-uniformly quantized 
with bit-sparse canonical-signed-digit representations to reduce multiplications to 
simple additions. Moreover, for sparse fully-connected layers (FCLs), the proposed 
scheme introduces column-based-block structured pruning, which is integrated into 
the same architecture that maintains full multiply-and-accumulate (MAC) array 
utilization. Compared to prior dense and sparse neural networks accelerators, the 
proposed architecture can reduce inference energy by 5.1x and 2.4x, and increase 
performance by 5.2x and 2.1x, respectively, for convolution layers. For sparse FCLs, 
the proposed architecture can reduce inference energy by 2.4x and increase 
performance by 2x compared to prior work.

This talk also discusses technical challenges and promises of processing in memory 
(PIM) for deep learning acceleration will be discussed in the holistic ML-IoT system 
perspective. 



5) Disrupting Processor Architecture with Non-invasive Near-Data      
   Processing: DNN Training Case Study

GwangSun Kim, POSTECH 

Abstract
In modern high-performance systems, including GPU systems, the memory 
bandwidth wall affects overall system performance for many important workloads 
such as DNN training by limiting the high utilization of the large number of 
compute cores. While processing-in-memory shows promise in making DRAM's 
high internal bandwidth available for computation within DRAM, it's also crucial to 
maximize the utilization of memory bandwidth available to the processor die. In 
particular, by placing near-data processing (NDP) units near the memory controllers 
within the processor die and offloading memory-bound operations from the core, 
compute-bound operations executed on the cores can be overlapped with 
memory-bound operations executed on the NDP units.

However, realizing an effective NDP mechanism presents three major challenges. 
First, overlapping compute- and memory-bound operations often cannot be done 
due to dependencies. For example, in CNNs, memory-bound layers, such as batch 
normalization, depend on the preceding convolutional layer and prevent overlap. 
Second, while fine-grained NDP can maximize NDP offloading opportunities, 
existing approaches require a special instruction executed on the core to generate 
NDP commands explicitly. Introducing such an instruction to ISA could require 
extensive changes in the core microarchitecture and core-side software and prevent 
widespread adoption of NDP. Third, the NDP unit should be flexible enough to 
support various operations while incurring minimal hardware overhead.

In this talk, I'll introduce a memory access-triggered NDP (mtNDP) architecture that 
addresses these challenges. The mtNDP is a versatile and non-invasive mechanism 
that can be deployed to various components of the system, including within a 
processor die (e.g., near memory controllers) or memory expanders (e.g., within 
CXL controller). Our case study on mtNDP for DNN training on a multi-GPU 
system shows that it can achieve a significant speedup of up to 2.7x (47% on 
average) while reducing energy consumption by up to 41% (38% on average).



6) Energy Proportional Link

WooSeok Choi, SNU

Abstract
With the explosive growth of data traffic in the AI and Big Data era, data 
movement/communication in both high performance computing systems and 
mobile platforms are starting to consume significant portion of the system power. 
This continuing trend urgently calls techniques for energy efficient data 
communication before energy spent on moving data dominates the information 
processing stack. This talk discusses potential strategies to improve data movement 
efficiency and presents design examples for energy proportional links (EPLs). EPLs 
address the limitation of data movement efficiency that improvement on energy 
efficiency of link building blocks is not fully translated to power savings at 
system-level, especially in many practical applications where links are only 
sporadically utilized. Silicon measurements of the energy proportional links will be 
presented to prove the effectiveness and efficiency.


