

2025 IDEC Congress CDC

A 1.12-ps Resolution Flash ADC-Assisted Coarse-to-Fine Time-to-Digital Converter with ADC Reference Voltage Calibration and Digital Linearity Correction

Solmon Shin, Youngsik Kim, and Shinwoong Kim

Department of Computer and Electronic Engineering, Handong Global University, Pohang, Korea

Introduction

Wide measurement range

ADC-assisted architecture

High linearity

Linearity Improvement Technique

Digital Digital Code (N-bit) Code (N-bit) ∆t_{res} ☺ 👔 Linearity 🙂 Linearity 😕 $\mathbf{\Phi}_{error}$ Φerror Input conversion Input conversion range range

Figure 3. (a) ADC input voltage variation caused by non-uniform phase spacing, (b) ADC reference voltage calibration, (c) TDC linearity correction

Figure 1. Block diagram of the proposed TDC

- The proposed TDC employs:
- Ring-oscillator-based coarse-to-fine TDC
- Coarse conversion: multi-phase encoding

Figure 4. Simulated DNL and INL of the proposed TDC

- Achieves 1.12-ps resolution using an ADC-assisted coarse-to-fine architecture
- Supports 63-ns input dynamic range with an 8-bit counter in a ring-oscillator-based TDC
- Enables 5.6-ns conversion time by employing a flash ADC for fine conversion
- Linearity improvement by applying:
- 1. ADC reference voltage calibration (DNL 10 LSB -> 3.8 LSB)
- 2. Digital linearity correction (DNL 3.8 LSB -> 1.6 LSB)

Figure 2. TDC conversion process: (a) coarse conversion, (b) fine conversion

Figure 6. Layout view

 Table 1. Performance comparison

