IDEC Chip Design Contest

A Power-efficient Incremental Delta-Sigma Analog-to-Digital **Converter with CT Input Stage for Sensor Applications**

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea Mixed-Signal Integrated Circuits Laboratory (MSICL), khsong@kaist.ac.kr

Abstract

This work presents a high-resolution incremental delta-sigma ADC (hybrid CT-DT I-DS ADC) with CT input stage for sensor readout and measurement instruments. As an incremental ADC with the architecture utilizing CT input stage, it achieves 16-bit resolution and supports input multiplexing via reset operation while providing easier input drivability. The loop filter (LF) adopts a third-order structure with the first integrator in CT and the second and third in DT, preserving the anti-aliasing and resistive input benefits of the CT stage while minimizing overall power consumption. A Class-AB amplifier is used in the first integrator, and cascaded floating inverter amplifiers (FIAs) are used in the second and third stages to improve power efficiency. To reducing the first-sample error and allowing the fast LF settling, precise timing of input pre-conversion is utilized. The I-DS ADC achieves a Schreier FoM of 170 dB, with an SNDR of 97.1 dB in a 10 kHz bandwidth, consuming 515 µW from a 1 V supply.

Proposed Architecture & Measurement Results

Overall Architecture

First CT Integrator

- Resistive input impedance \rightarrow Reducing drivability burden of AFE \bigcirc
- Anti-aliasing \rightarrow Reducing the noise folding resulted from sampling \bigcirc
- Passive-ELD compensation \rightarrow Simplified layout and better matching \bigcirc

Fully Dynamic DT integrators

- Two-stage FIA (floating inverter amplifier) \rightarrow High power efficiency \bigcirc
- Charge sharing of feedforward signals \rightarrow Output swing requirement \bigcup

Amplifier for First Integrator

- Class-AB output stage \rightarrow Linearity, high gain \bigcirc
- Dynamic Bias for 2^{nd} stage \rightarrow Low V_{OP} \bigcirc
- Chopping \rightarrow flicker noise $\downarrow \bigcirc$

Chip Layout & Measurement Results

Layout

■ FFT Plot

Amplifier for Second and Third Integrators

- Two-stage FIA \rightarrow output signal swing range $\uparrow \bigcirc$
- Local CMFB \rightarrow constant output CM w/o large C_M \bigcirc
- w/o large $C_M \rightarrow \text{stability} \uparrow \bigcirc$
 - Power Breakdown

Input Pre-conversion

o → OTZ

Pre-conversion Phase

Error integration Phse

STRT

 $\approx -V_{IN}$

Input pre-conversion

Accurate incremental operation ⁽²⁾

0.5R_{IN}

– Fast settling of loop filter 🙂 – No waste of conversion results 🙂

Conclusion

This work presents an incremental ΔΣ ADC architecture with a continuous-time (CT) input stage to leverage its resistive input impedance and reduce the design requirement of analog front-end. Discrete-time (DT) stages are used to enhance power efficiency. A floating inverter amplifier (FIA) in the DT stages and a low-voltage Class-AB amplifier in the CT stage provide high linearity while reducing power. An input pre-conversion sequence enables fast loop filter settling. The ADC achieves a peak SNDR of 97.1 dB over a 10 kHz bandwidth with 515 µW power consumption, resulting in a Schreier FoM of 170 dB.

