

A V-band ×4 Amplifier-Frequency-Multiplier Chain

M. Choi, W. Keum, J. Jang and J.-S. Rieh High Speed Integrated System Lab. Korea University, Anam-ro 145 Seongbuk-gu, Seoul, Korea

Introduction

A high-frequency band offers a wide range of applications including communications, radar, and imaging system thanks to its wide bandwidth capabilities. To construct the high-frequency system, it is essential to develop a signal source with excellent phase noise performance. This is typically achieved by frequency multiplication of a stable low-frequency source [1]. In this work, a amplifier-frequency-multiplier chain (AMC) with 3-dB bandwidth of 14 GHz is designed based on 28-nm CMOS technology.

1. Circuit Design

- Fig. 1. illustrates the schematics of proposed AMC.
- In Fig. 1, the AMC consists of two-stage frequency doubler, with one-stage drive amplifier placed before each doubler stage.
- Each amplifier consists of 1-stage common-source amplifier followed by push-push frequency doubler.
- By employing a differential topology that facilitates the virtual ground, the circuit can be made less sensitive to the ground route.

Fig. 1. Schematics of the AMC.

- Cross-coupled capacitors (C_{1-4}) are utilized to enhance the stability factor (k) and maximum available gain (MAG) of each drive amplifier stage.
- Conjugate impedance matching was implemented with transformers to minimize the area and simplify the biasing network.
- Fig. 2 shows the chip photo of the AMC.

2. Simulation Result

- Fig. 3 shows the output power over output frequency when input signal power is 0 dBm.
- In Fig. 3, the peak output power is 0.5 dBm at 50 GHz.
 The 3-dB bandwidth is 14 GHz, ranging from 43 GHz to 57 GHz.
- The chip size is 1254 \times 588 μm^2 including pads.

1254 μm

Fig. 2. Chip photo of the AMC.

Fig. 3. Output power over output frequency.

Conclusion

In this work, A amplifier-frequency-multiplier chain has been designed based on Samsung 28-nm CMOS technology. It has peak output power of 0.5 dBm with 14-GHz 3-dB bandwidth. With a higher frequency frequency multiplier, the designed AMC can be applied to terahertz systems, including wireless communication, radar and imaging systems.

Acknowledgement

The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.

Reference

[1] G. Lim, J. Yoo, H. Son, D. Kim, and J.-S. Rieh, "A WR3.4 x12 Frequency Multiplier Chain Based on InP HBT Technology," in IEEE Asia-Pacific Microwave Conference (APMC), 2021, doi: 10.1109/apmc52720.2021.9661595.

