

A 45-fsrms-Jitter D-Band Frequency Synthesizer Using a **Subsampling PLL and a Harmonic-Boosting Frequency Multiplier**

Seohee Jung, Jaeho Kim, Jooeun Bang, and Jaehyouk Choi

Seoul National University (SNU), Seoul

- W/D-bands are the most viable candidates to implement CMOS-based TRx
- Design of a W/D-band freq. synthesizer for LO generation is most critical
- Using FSPD, low jitter can be achieved due to high K_{PD} even in W/D-band 🙂
- Still very narrow FTR due to large C_{PAR} and low Q of the tank in W/Dband 😕
- Cascaded architecture can help to achieve both low jitter and wide FTR 🙄
- However, there are various disadvantages in conventional W/D-band frequency multipliers 8

Concept & Overall Architecture

Key Building Blocks

***** Design of the 3rd-HM Boosting FM

- Cascaded FS: ① SSPLL with ② Class-F VCO and FLL+③ 3rd-HM boost FM
- Low Jitter (< 50fsrms) : (1) In-band $PN \downarrow + (2) OOB PN \downarrow + (3) PN Degrad. \downarrow$
- Wide FTR (> 10%) : ② FTR & 3rd-HM个 + ③ P-eff. & BW↑

Measurement Results

Measurement setting

13.1

7.4

2.2

1.0

4.7

37.5

65.9

Generator

FLL

RMS Jitter = 45fs

kHz to 300 MHz

20log(318) ≈ 50.0dB

100k 1M 10M Offset Frequency (Hz)

3rd-HM Extractor

Total

-22.32 dBm XCORR Factor 0 dB Meas Time ~

Performance Comparison

	This Work	JSSC'20 [3] X. Liu	RFIC'14 [4] Y. Chao	TMTT'16 [5] N. Kim	JSSC'19 [9] Z. Huang	ISSCC'21 [1] S. Yoo	ISSCC'23 [2] J. Bang
Process	40 nm CMOS	65 nm CMOS	65 nm CMOS	65 nm CMOS	65 nm CMOS	65 nm CMOS	65 nm CMOS
Architecture	50 GHz SSPLL + 3 rd -HM-Boostin g FM	23 GHz PLL + ILFM chains	50 GHz PLL + push-push(x2)	61 GHz PLL + push-push(x2)	ADPLL w/ inductively tun ed VCO	Direct Fundamental Sampling PLL	Direct Fundamental Sampling PLL
Output freq., f _{OUT} (GHz)	144.0 to 162.0	122.4 to 136.8	96.8 to 108.5	120.4 to 123.8	82.0 to 107.6	99.5 to 102.5	99.5 to 103.5
Tuning Range	11.8%	11.1%	11.5%	2.78%	27.0%	2.97%	3.94%
Ref. freq., f _{REF} (MHz)	500	100	195	59.6	125	500	500
100kHz/ 10MHz PN (dBc /Hz) Normalized to 150GHz	-94.4/ -120.7	-83.6/ -94.0	-80.4/101.4*	-61.2*/ -100.6	-81.3*/ -101.1*	-93.7/ -97.8	-93.0/ -106.0
Jitter _{RMS} , σ _{RMS} (fs) @f _{OUT} (GHz) (Integration range)	45 @159.0 (1k to 300MHz)	159 @132.0 (10k to 10MHz)	170* @99.4 (10k to 10MHz)	965* @122.0 (10k to 100MHz)	276 @107.6 (10k to 10MHz)	82 @102.0 (1k to 300MHz)	47 @103.5 (1k to 300MHz)
Reference Spur (dBc)	-43	-33	-34*	-30*	<-34	-42	-42
Power, P _{DC} (mW)	65.9	36.6#	14.1	82.9	35.5	22.5	26.6
Active area (mm ²)	0.19	0.39#	0.39	0.35	0.36	0.16	0.13
FoM _{JIT} \$	-248.7	-240.3	-243.9	-221.1	-235.7	-248.2	-252.3
FoM _{JIT,M} ^	-273.8	-271.5	-271.0	-254.2	-265.0	-271.3	-275.5

*Calculated from measurements "Only for the D-band chain $FoM_{JIT} = 10log((\sigma_{RMS}/1s)^2 \cdot (P_{DC}/1 \text{ mW})) (dB)$ $^{\text{FoM}_{\text{IIT}M}} = \text{FoM}_{\text{IIT}} - 10\log(f_{\text{OUT}}/f_{\text{RFF}}) \text{ (dB)}$

© The proposed W/D-band frequency synthesizer achieved the lowst RMS jitter, while also providing a wide frequency tuning range of 11.8%

Acknowledgement The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.

