
A 7-bit 17-fJ/conv-step Area-Efficient asynchronous **C-CIDAC SAR ADC**

Junmin Park and Hyungil Chae Konkuk University

- The speed of digital processing by hardware is constantly increasing due to technology scaling, and the demand for high-speed ADCs is also increasing
- In the design of Time-interleaving, which is an essential technology for high-speed ADCs, small area and low power consumption of a single slice ADC become critical goals This work proposes an improved hybrid structure of C-CIDAC SAR ADC
- Proposed C-CIDAC SAR ADC structure and CI cell **CI** Pulse gating VTOP ENci SAR Logic <2> 2_{xCl} 2_{xCl} Active $EN_{CI} < 1 > 1_{xCI} | 1_{xCI} | 1_{xCI}$ M, $EN_{CI} < 0 > 1_{xCI} | 1_{xCI} | 1_{xCI} | 1_{xCI} | 1_{xCI}$ Activate # 8 4 2 convention EN_G o Charge-injection cel Improved hybrid structure of C-CIDAC SAR ADC Charge-injection cell (CI cell) Power gating MSB conversion : CDAC & LSB conversion : CIDAC $\mathsf{M}_1\,\&\,\mathsf{M}_2$: Switch the discharge direction Reusing CI cells increases digital logic complexity Decrease overall area and design complexity M₃: Determines the discharge amount ightarrow affecting the power consumption and area ✓ Utilize CIDAC for LSB conversion with a low linearity requirement Minimize the digital logic and number of transistors New pulse gating scheme CDAC 3bits + CIDAC 4bits ~ The CIDAC area greatly reduces Turn on/off the Inverter supply voltage Optimize the trade-off between area and linearity Minimum logic gate delay to CI cell $\checkmark\,$ One bit of redundancy corresponding to the LSB size of the CDAC to ightarrow simplify digital logic and CI cell tolerate the decision error and stage gain mismatch → helpful in terms of power consumption and area **Measurement Results Comparison table and Performance comparison**

	This Work	ASSCC'24	ASSCC'23	CICC'23	ISSCC'16	JSSC'20
Architecture	C-CI SAR	CI-C SAR	C-CI-CI SAR	CI SAR	CI SAR	SAR FLASH
Technology [nm]	28	28	28	28	40	28
Supply [V]	0.9	0.9	1	0.95	1	1.1
Fs [GS/s]	0.7	0.6	1	1.1	1	1
Resolution [bits]	7	8	8	6	6	8
SNDR [dB]	38.7	43.5	43.5	35.2	35.1	45.5
SFDR [dB]	53.1	59.6	54.1	49.4	49.7	59.4
Power [mW]	0.835	1.48	2.61	1.32	1.26	2.55
Area [um ²]	259	848	261	226	580	5600
FoM _w [fJ/conv- step]	17.03	20.2	21.3	25.5	28.7	16.6

Comparison table with other medium-resolution SAR ADCs using the CI scheme.

- ✓ 7-bit C-CI SAR ADC at a sampling frequency of 700MHz
- ~ Achieves the best FoM_w of 17.03 fJ/conv-step
- Achieves 0.835mW power consumption
- Achieves Competitive area efficiency of 259um² area
- ✓ An improved hybrid structure of C-CIDAC SAR ADC with 7-bit resolution at a 700MHz sampling speed
- Achieves high area efficiency with good linearity by analyzing DAC stage configuration and bit allocation, as well as Pulse gating method
- Achieves a very small area and best FoM_w among the CI-based SAR ADCs, which is suitable to be used as a slice ADC for high-speed TI ADC

The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.

IDEC Chip Design Contest