

A Power-Efficiency 8-bit 2-GS/s Asynchronous Pseudo Loop-**Unrolled SAR ADC**

Ye-Won Yun, Da-Yeon Kim, Ji-Min Kim, Ji-Min Hyun and Dong-Ryeol Oh

Jeju Mixed-signal Integrated Circuit Lab (JMICL), Department of Electronic Engineering, Jeju National University

Introduction

Asynchronous Pseudo Loop-Unrolled SAR ADC

- \checkmark Only one CDA for preamplifier \rightarrow Reduce offset calibration burden
- \checkmark Loop-unrolled conversion \rightarrow Eliminate register delay
- Self-triggered CDA's async. clock \rightarrow Eliminate external high-speed clock
- → Faster conversion than conventional SAR ADCs

- Complementary Dynamic Amplifier (CDA)
 - ✓ Current reuse
 - ✓ Twice conversion during one CLK period
 - Reduce CLK driver & power consumption
 - ✓ Generate Async. clock that are not metastable

Proposed Asynchronous Pseudo Loop-Unrolled SAR ADC

MUX

8b 500MS/s Sub-ADC

- Proposed Pseudo Loop-Unrolled SAR ADC
 - ✓ Use One CDA \rightarrow Reduce CLK driver & power consumption
 - ✓ Generating TCMP clock with clock-gen using MUX when clock rising and falling \rightarrow Enhancing speed and timing efficiency

Complementary Dynamic Amplifier (CDA)

- \checkmark CDA does not require a reset operation while conventional DA requires the reset operation.
- \checkmark CDA's operating clock is generated by synchronizing to the dynamic output signals of the CDA; not the output signal of a time comparator that can be metastable.

Measurement Results: Compared to previously reported 7~8-bit ADCs, it achieves high-speed, low-power performance at 7.1-bit ENOB.

Conclusion

- CDA-based asynchronous SAR conversion
- Power efficient CDA
- 8-bit 2-GS/s 44.52dB SNDR (7.1 ENOB) and 57.28dB SFDR

Acknowledgement

The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.