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Session 2 Switching-Based Power Converters
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Session 5 Monitoring, Regulation, and References
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Self-Heating of GaN HEMTs Flip-Chip Design
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Proposed Two-Stage OP w/ UHGA I-V Curve of UHGA Stage
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Session 14 Hybrid DC-DC Converter
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Proposed 4-Phase Coupled-Inductor il 4-Phase Coupled-Inductor Design
Resonant Converter MnZn Fermite
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System Integration Scheme
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Proposed Current-Boosting CaS Converter
Proposed 4:1 Hybrid SC Charging- Proposed
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2 28510 FEgR Bt FeS %ga ALt 0|E soff 2™ AXto| Ts MZ|L} by

Z[Hol ofX| ==0| 75t E, HE AEIEYS
Qs x£7| 7+ Al CHEE HiHZ[ CHA, %2 %Etol BZ HAH(Gro)E BX STt
= ne[EF2 HESIAULL Gl MEE oHX|E 0|83l ICE &5t O|= HIHE|E
SHYCEMN, HIHE| 0| 2tA 80| & AELE RO JtsdICE FIH ez tHY QY
EE time-multiplexingdt0] & AXteb EfF FX|Ql £ JHA| HHX|R2RH &2 7t
o glo] oHX|E F=SIRUCE ZH =2 X QtSt= SHHAE 1ICE 7|EL] full-bridge

rectifier (FBR) CHH| 780% =<2 |t M3 == ds2 FdHGCt



( Bias- FI|p [2-3] Contrast of Pear According to Vear & Start-Up Speed

1 VB‘“ &| @ Periodic
bc; Vi or¢¢ PET

T

FHp
<~ e \
4
o l-- :JL ————— VED
| ¥ Limited Veer | r i Vear 1S i
rrr A t « StartUp - Voc Vear Fis.;.vzﬂiiﬂﬁ.ﬂmﬂﬂm
oo === 1 === PBAT max
o %" leneder Paur=0 Proposed Fast Start-Up Dual EH with Bat.-Independent SAECE
X Bat. dependent X Unsuitable for shock Main Power Stage Shock Periodic
[ Double Pile-Up [6] J Lleay
e AL v ETET
L ¢
JSPC;rR%.VPET z ;e
Ven ﬂ XNeg. GD f

*T\r\v/\ /AN o) ﬂv ﬂu ¢ L,
ghmm e )___ —-Vio V Even f fails to reach Veo — Can harvest
= Limited Vpn/ ------ A"VBAT g v Harvest from all excitation types
= b. A
t PET z

\ T ] ‘ﬂ‘ %_CP & t
de o [ e om L P le 3
5 = BAT max 1 + Veer - ? B{ secem ) wmam ¥ Aam )
o, Ponr=0 ¥ A A t

WBAZE. ¢ | v PET+PV dual EH v PET smooth mode transition

XBat. dependent X Unsuitable for shock
X If Vper fails to reach Vpar, it cannot harvest

v Ultra-low quiescent current  Only resonance duty modulation

[28 1] XNQtStE Battery-independent SAECES| &2t @12 & 7|& 7|&1t9| H|

#18-2= xidian universityOl Al HH?D =F2 =, Y™ Xl OHX| SHHARS 2ot
full-cycle full-bridge rectifier(FC-FBR)2} HFJF 5% 7|8t2| hill-climbing maximum power
point tracking(MPPT) 7|&& H|QtStCt 7|EQ| SHHAE 7|#e YW AXtol HI|7|A
ZAg0| oot &M= 2IHO|X|2H Aot A d&0M= 235|3 Ehedt full-bridge
rectifier 20t 280 HO{X|= ZH7t Aok 2 =22 0l2{¢ 2HE si&st7| {5t
full-cycle FBR TXE HMQSIRACE 7|E FBR2 &M AKX MU0 7 MLELC =2 M
oF OHXIE 2ot =2 EHO0| LUSIASL}, HOHSt= FC-FBR2 T AHO|Z0f A
AR 288 24510 o 2 oHX| Het J9nt =2 =352 2HSIQACh Eoh MR
=8 7|dtel MPPT 7|®#E MEZ HMtsiich =3 S XY 585h= i, 2EH
o3 MFol go| =3 ™M vzt Che E& 0[83t0] 58t M LX| g2 gio|
T P&O(Perturbation and Observation) ¥12|52 S MPPTE ZMSIQICE 5 ZAxt
Hotsl= 2|2= 91.3%2| Z|0f MEBe 288 HY4ACH, 7|& B AH|O[X| Y
E{S0| 100mV 0|29 T 2|ES EO|l= A1 Fal, 20mv O|FHe| 02 @2 =8
2| SSIRACE FIMH O E2 clock-multiplexingg &5H0 5 7HQ Y™ AXpof| CHE}HO]

o
=
7

E!
d= 7t 810l A OHX| ==0] 7hset AS HdENeE HIoIUt



ISSCC & JSSC [1-4] LB © Suitabl

4F Ay ?,‘ Rs LM CK I
n O
e Cr Rigid mass i Piezoelectric u
element = v
Ideal Nodel 1 e T rT
m 1] Vs ?
@ Model-Induced MPPT h o || Reetifier =
_ Deviation; 77777 77777 & Interface Mechanical Electrical
@ Suitable for Constant| ‘gt +.e © Enhanced MPPT Accuracy
Amplitude Vibration || emoce s Damper D © Wide Electromechanical Coupling Range

e for Constant Amplitude and Constant Excitation Vibrations

FBR ” Ve
—LPT
== T
L)
FC-FBR ” Ve
—LPT
= 2
RL
K

(28 2] M2tstE Full-cycle FBR(FC-FBR)S)

SE 2] % 7|= FBRIMQ| H|W

Simplified model with constant
vibration amplitude

Ce | Re
Ria2w?um
2[1+(R.Crw)?]

Simplified model with constant
vibration excitation

Rz

Pou =

I3
I I

L

Ip

Rr

Rp

|1 ]

IL@DCM: Pou=24"L T peak
fswis constant & current envelope

Zli2 peak

Cp | Re

Re: PZT Resistance; Rs: Rectifier Resistance;
Ro: Mechanical Damper.
P FnRia? [1+(R. Cpw)?]

°t "2+ 2(R.Cpw)? [D(1+(R.Crw)?)+R.a?]?

follows sinusoidal|distribution

y
Pouto= X 1L pea Comparison

(nonlinear) Zlu pear

5 Vs P&0-MPPT based PWM
-E f[ -
£9 | + s © Adaptive multiple
E 5 |Z Rectifie i MPPT parameters.
&% N © Only sense ..
= B
o a \‘ —
by VPPT R=ViWl\
=) @PT >
- Inductor current at DCM: Rw=2L/(fswT?on)=R1 Ton,opt Tow

.

OI_

[28 3] Metdt= T
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Dofcfsty MI7|UMASSHE HEALDRY QXS
Session 27 Precise and Robust Biomedical Interfaces

0| 2025 ASSCC2| Session 60| A= Imagers2te FHZE & 4HO| =20| LYHEL|QULCE

#27-1 O] =22 7|Z 1/Q 7|8l bio-impedance readoutO| 7tX|= F 7tX| 8tA, & 1)
CG2t RFE 7He| QEX[AH-O0|EXAE Qlsl L/¥St= magnitude/phase =2 X[, 2) DC St
St 0| LPF settling AlZt IfEO| LdSt= EME SiZASH| et MER phase-
locked sampling(PLS) 7|8k EIS ICE H|QFetCh MQtEl FZ= pseudo-sine current
generatorO| C{3l, target impedance?t 7|& X (RREF)Z &A|0| ZHESt= dual-AFEE
AL SIEE ZF B2E IF YO capacitive-coupled IAS Sdf 3= ZHEE F|, VREFO
zero-crossing®ll |4 S7|El sampling clocke O|&3l VM1t VREFE X MEZsHC}
F7| &t 0°/90°/180°/270°2| 4-%|&E FESIH =5 d22 o F7|¢o 7+
UL ZoHo =z PFo| Y S DC 20t O A4 €38 + AN WE ODRO| 7ts
ZICt Sampling PLL(SPLL)= At&0| E|[}=0l, VREFZ} VCMIF BHe Q| phase locked
EtO|Y= O|85t0] phase delay =H|E Sl ZASERALE.SPLLZ sampling-phase detector®f
frequency-locked loop(FLL)E 2, 2 A&XI0|A & FLLO| WEH frequencyE +=H
AlZICE 180 nm 3EL2E HMZE H2 4 kHz IFOIAM SZHSHH, 4 kS/s ODRS *E'ﬁdojtk 20
O~4 kQ HROM M 5E QA= 04% O|SH0|H, 4 kHz~2 MHz dH| YmEHA =E-
Z’30|M magnitude At 1.78%, phase At 1.8°F EHSCE SPLL HF HEE= o
7| O[LHO M =HE (T, 100 kQ 2HAO0IM 394 dB 0|5 ZZ0|M 40000742 ME0| 2]
S0 BEHAE 349 mQ/iVHZE ERACH

o
rot
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=
L}t

oot 4>

KT



Application Conventional BioZ Measurement System

Real-time @ Low Throughput

| " g

-

Long Settling Time of LPF

a ® Low Accuracy
Vil = lee AulZ]
2V =206+ 2IA+ 22

Proposed BioZ Measurement IC

Current Generator (CG) Phase-locked Sampling
<—| Look-up Table |

Pseudo-sine

s —T G Generator | ICurrent Reference | SIS D oug ket
& Sampling-based
'g Impedance
Demodulation
= \ Track NS-SAR 4
% f.=~f; Y . Ho&Id K ADC Do | @ High Accuracy
E ‘o A Gain/delay Error Cancellation
2 ’—( using a Known Rrer and SPLL
L 3 C
o
] \f Veer San;;g:gl_ }PLL o 0er IF Pre-demodulation
o © Wide Frequency Range
Readout Front-end (RFE) © Low Power Consumption

[ 1] #27-10M 7|EQ| #+x2F H|etst bioz FF IC

#27-2 1% ™ (high-density), CHH E (high-channel-count) 414 7|8 ZHEE(FE)QM =
HAY XAzt xME 8 #LMOl FLSHH, O0|F 6| direct time-division
multiplexing(DTM)-FE &7} 2] A& &[0 2ACL SHX|TH DTM2 HE AQE0o| 2fdl
SSRE ZHA(CMNO] ok B0 HX[7| MZ0f f=ut Zot7t 7|E FxE0 24

i

LHMSICH O] =2 0|2{ot &XE dilZ3H7| 2l active feedforward CMS(AF-CMS)
HMetettt s1 s 2t MEel CMIE 28 HINAH(Cn Ol ME 2] MESHL, S20f A
CnOl CMIE HMAHTH F differential-mode(DM) 2158t ENtA|IZICH DM AT =
continuous-time 2nd-order incremental ADC(IADC)2| fine loop(DPCF-Gm)2} coarse
loop(DM tracker)& & XNz2|&Ct. MEE uH0|AM ZWSt= kT/C noise= chopping=
% DM Z=Z0|M HAHELD, Cy2 HEHO 25 57 M0 U YJO|HA Mot
eICt EDH AF-CMSE= MEE 7|890|E2 Gm variationOf 2} residual CMIZt HE =
ALt O|F SiZSH7| &3 =22 GmE F& 2H0f| ZFA|7|= FERE XESIRUCE IDAC
= RsE &9 LEY FxE AMEYLEM HEZ 0[50| (IDACRs)-12 17FE[0 Gm
Hatof deks X =Lt SHX2E Gm degeneration@ 2 QI8H W2 Gmit F7HEl O]
= 7] 28, =22 dual-path current-feedback(DPCF)-Gm S H% 8F Gm
2 FYA7|l= +EE HEIIRULE 180nm CMOSE A E 8XY
S

o
M2 Al 10 mVpp, 40 Hz CMI =AM 119 dB2| peak CMRR

nr e o> o



2 2d6i B 34 dBel M =HE E L EBH 100 Hz, 700 mVppll 012 & CMI &
SO ME ZBtE|X| 2410 514 dB SNDRZ2 X8, €2 common-mode HOAZ QHF
Mol 20| 7tsEg YBSIRACL IRNE AF-CMS X8 050 M2 Xjo|7} 79|
XCtEl CMS7F O|=E FJ7HAIZ|X| a2 ZQISHRUCE HASEl neural signal A A
(LFP, spikes)OIME AL= Qo &2 &2H(R=0.998), 5L% spike AE W+E B2,
7|Z DTM FEs CHH| 71 =2 CMRRI 7t& H2 CM "RIE MSoChe "ol 37
22 SOl
(a) Existing CMS Solution
c, Feedback delay Z
N:1 Cris v, H_L l' ] Vo
V1o--o-1- cco
T o,
Vzo--o-—:b- C T
Zink - V2 Vor
> kT/C Noise * Induced » Noiseless
» Z,y degradation kT/C noise » No Z, degradation
» High speed » Limited speed
(b) Proposed AF-CMS in DTM Architecture
Robust to residual Ve
,DACPUSH
> Noiseless
Vjoto—o » No Z,, degradation
LF(s)| { ADC » High Speed
Vaore— 1 » Applicable to DTM
N:1 S2&fcn S
Rejected KTIC noise L Ioac,purt s 2Ts (~200ns)
3 ) e
k’ FaldingtaDi) fCHmaduI:‘trt;g_> L3 LD S; i
Random few I L
| KTIC noise S f S; faw feu F S; faw feu F J
[38 2] 7|&EQ| CMS solutiont H|2tSH AF-CMS in DTM T+&
XMXPER
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=
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Session 30 Analog and Digital Interface

2025 ASSCC Session 30= Transceiver 2H, 2L M A
Aot AW MO interfaceE AJWStD QUCH

=

oh @40 SHFHL0| Adaptivet EFNHE S&E
o |
—

fo
Sl
>
u
>
>
]
30
H

=
S

—
OlM MTEHoR oHXzesdES 4dXdte =220 Y -
= 1 U= Chiplet interfacel| HHEE OHFELD As =& 270 HHE 0EO|C}

#30-1 2 =F2 7}0|AE, FHLICH Marvell 2|1 SK HynixOM 3& ZED =F22

2.5D chiplet packaging®ll Al O|f+7} &l Crosstalkdt 2= #310]| CiDt toleranceE %
interface solution= A|QtotCt 22 HEO| HOM &2 HO|HZE2| transceiver

TH5H7] 2|8l single-ended data lanel| ZtZAO0| HA™ FOIX|1, A2 Qldf
Capacitive coupling@ 2 Q1%+ Crosstalk(XT)0| & Z}FEICE PAM-40{A] O] HHA2 O F
E2XH SNRE&0| HA5HAH E=0, O[F diZ5t7| ?I3f & ==2 adaptive
Crosstalk EqualizerE Z=QSIRACE XT2| £d1F &Lt High Pass Filterg &8930
Datad| Z3tEl XTHES MAHSH= YA 0|0 Least Mean Square(LMS) €12|ES &
off filter2| cutoff frequency@t DC gaing ZHSHA EICL LMSE &% filter S42| X
Mzt XTE {ESh= Aggressor?| 4=zeb XTo| &2 =2 Vicdimil=e
Equalizing ZatE Jedll O|F XA E|=0|, Victime| XT7F LAl aggressordf Hek
= T+ mutual XTE HX[5}7] 23l Inversion Clock signal2@ aggressor® Z-&35t%
Ct =7IX 92 calibrationO] Z &=l replica TIAZ RX Front-endOf| X-&83lf -25~115°C
o Yo 2z 30| i3t Common-mode mismatchE 3mVEZEC=2 EQCH 1 &4
1F PAM-4 Az g 7+ 2tAo| EUX|E LIEILH= Ratio-Level Mismatch(RLM)2 83%
Ol 97%2 SHMAIZIOH crosstalkO] E&HEl clock| rms jitter d&2 10.49ps0flA
217ps2 M AIZACE 1E-122] BEROIA 0.11UI12] Bathtub X|EE EJL, HS 2%
H3t0| A 0.02UI12] M2 Eye opening variation2 E RALCH

i

i F|>+



Channel Adaptive Crosstalk Equalizer

Drx-imo P Ial mOu'c ut| _
Hxte
Dpx.ourt ‘
Dpx.in I =¥ | "
i + ! g =
Hxrc 4L<
CLKRrIN T T 2L oMLz

5 5

W{P We
~1CLKBRrx-.in CML2
- i r [ CMOS
L A |2 XTCrle o
Tp-xT1C

Dy

f—

Dy

CLKB

(a)
~CLKBrew——{ § ——00—[p~[Z W,

Dpyour1—— |
XTCr A F G {E—» W

. Magnitude (dB)
b b b
Qo

=
[=]
=]

Wep(n#1) = Wg(n) — - sign{CLKBrxan) - sign{Drx-outi)

10 107 _ 10® 10° 10" 10"
Frequency (Hz) Wg(n+1) = Wg(n) — p-sign(XTCg) ' sign(Dgrx.out1)

(b) (c)

[13 1] Adaptive crosstalk equalizerE O|-&%+ PAM-4 Transceiver?| T4

#30-2 = E2UtuoM HES =222 23 HO0|E2| Transitions
oF = =

7
A A
g 77

= [LE I =
St M22 $547] #2& HMetetth 2 ¢+= Die-to-Die 2/E 0] S
AOM, Capacitor 7|2t 47| 5 &40 = HAY Z7teb HHAHQ BHZO|(run

dFAIO

length) 2M|E SilZ25t7| 23l Ml 7tX| EZ8= MAlStCt
XM, AC-coupling Capacitor® &X7|(TX)2t #=A7|(RX)7 &3|st=Z 3l06] G|O|H
Transition® & X[St= HAlE = YRUCL
=M, ¢ HolHo DC Mo El Low levelA{= PMOSE, high levelofAl& | E=HH
7|8F NMOSE B oz A& HOIHE HEXez 45t =& H ULt
AW, ZHERSE inverter Z|8F RXE &89t ¥ OIO[E{2| middle voltageE inverterl)
trip-point =X 2 FYEAHA % HEEdS =SEUCH

7|8k NMOSOf| A et 5= QU= AC-coupling 7HTH
AlEf induced transition feed-throughZ QI3 eyel| Low DC level Otz 22| undershoot
HMES HAGHT| 8l capacitors F7IEtCZM Eye marging E |G
Hetel &5471= 9F 0002 m22| 042 A2 THXNIF 11889 Tb/s/mm/pl/bite] &2

FoM(Figure of Merit, It2| CHH| Effective Bandwidth)2 7|E35lH 243t 458 YT HCL

£73| High—Low TransitionA| I|E=&H



Simplified Circuit Diagram of the Proposed Transition-Driven Transceiver

Low -> High Transition

300mV

Dn="0'3"1' v _ o /T )

oD amplitude
*Vopa=0.3V, Vpp=0.8V Vooa = CTRAN"(CTRAM+CTR}'3OUmV

o B Y 0
o - Wy
D'""'I PU Crran|i B00mMY

RX INCParEBUF IN  BUF_OUT
—— i tUV

High -> Low Transition
Dn="1"=2"0'

*Vopa=0.3V, Vpo=0.8V

D[P0

RX_IN CrarE BUF IN

T\ ___ o
RX_IN
AC amplitude = o

v = Crranl(Crran+Cpag)-300mV
bpa i
Wy
,
Pi _[BUF_IN 300mv
Crran t

800mV
BUF_OUT EUF_OUT\—
I—, o

t

*Vrip = Inverter Trip-Point Voltage **Vi= Voo - lnigh(Ronnt+Ronnz)
luicw = 10 pA; NMOS is small to minimize power consumption,

[2& 2] M 2=l Transition-driven transceiver®| operation

AP B

f )

P

2% Mgtigtn
HL-20f : Reference-less CDR/High-Speed Wireline
Interface

O|H|¥ : park_john@naver.com
® =L 0|X| : https://sc.sogang.ac.kr/melab
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Session 12 Ultra high-speed transceiver

2025 ASSCC Session 12.= & 4Ho| =20| LHE|QIC} “Beyond 100Gb/s'2] REE &2

0| =1% OOl ©&E fIet o2 HFAS0| =47 2H, &4 1H, 47 1HE
L0 27071 E|QUICE S23| PAM-4/PAM-8/QAMEt Z2 IXHZET|HO| EaHOl
YDt Equalization 7|'HE0] AHEQULD, =2 MYH X oH4X| 20 XFO| X0
KO, the=3t Data rate SCH7t Ot 2AMHE =2 4 A|A”HE 276H= Lol 55
2 & & UCL O & Receiver?t ZHE =3 2HZ HHEIX} SO}

#12-1 2 =22 TSI LHD =F2Z 108Gb/sQ| PAM-8 Receiver®| &2
linearityE E&5t7| 28 Multi-path CTLE+FFET*Z2| Equalization system2 K| 2totCt.
High-swing2 2 28 E= PAM-8 signaldf| M2l linearityS 2FESt7| ?ISH Linear time-
interleaved FFEZ7} EYE[RA 2D, High-swingOll CHBE linearity =2 E |3t Attenuator, IS
£ B4 o YHAUZO| ™S SamplingSh= Track and Hold circuit(TAH) 2|1
FFEQ| coefficientS Z=H3}7| 23t VGAZ 40| T/O{UA2MH, TAHH A& timing margin
= ZE517| o 75% Duty Cycle clock signal2 E-8dIRICt $HH CTLES| XM=
AmplifierE &-8%+ 4-way sub-ranging technique2 S3ll 87H2| signal levelS PAM-3HEf
2 5o Zudoz2 FZYst 7H49| Signal levelE THESH=  high-linearity PAM-8
Equalizing System= TSIt FoiEl A[AEE Soff 14ve XSy =0 o5t
1.95p)/bite] YUEHHY OjiH =2 THzES EJL Nyquist frequencyd|A 10.7dB2]
loss £d2 7t channelOf CHSEO] 1E-72| BERES THESIH 7|E CTLE+2-tap FFE system
CHH| 7HMEl BEREES UL

AA



(High-swing PAM-8 + ISI)

~=| Attenuator —bg——

oy :_Linear Time-Interleaved FFE Path

+Vser1

+Vser2

[12 1] 4-way sub-ranging CLTE + Linear Time-Interleaved FFEQ| 4

#12-2 = MOt XIQE [fStwojAM YWHS =29F |IR Equalizer?t 3-tap Direct DFEZ
0| 8%t time-interleaved HAI2| 112Gb/s PAM4 ReceiverE A70BHCE 100GE PAMA4 signal
o] 28E&[= 7|& mixed-signal receiver= DFEQ| timing margin 22| 0{2{& 3 Clock
signaling?| =& =2 QI3 Short-reach 7|#2| =2 Data rate® X-&3dt= OO SHAZt
[AALCE 0| 27| 8l Post-1-tap IIR summer?t High-linearity Track and Hold
circuit(TAH)E 2873t 1:2 Analog DEMUXE T35t DFEZ} ZHX| QU= 1-tap timing
budget2 225t loop-unrolled FEMA Z4dl= F7HAQ OaEE ERC 0=
long tail2 Zdst= o] 1SIQ] OJM EEES I8 tap-2 direct DFERQ} 2 floating tap direct
DFEE 8510 H2 bandwidthO| M ISIE 28 + UEE SIACE MAE SAS &
85t0] Nyquist frequencyOllA 28.4dB2| loss&8=2 EO|= channeld|A 1E-125F2]
BER % 1.32pJ/bite] OHX] &S Zd3tH, channel lossO CHSH OHX|&ZE& FoM¢l
0.046p)/bit/dBe| O|LHX| 255 EIRUCE

=1
=



; T
14tap IIR equalizer [f, Taps "° Do H_ | lpaTa /_» Data
TIIR.sum Tr:l\2q _fs_b 96 Output
P De a 56Gbfs PAM4 2
-I— TAH1 > 1/2-Rate Slicer tooele x| B X
D 4 -~ Q5| Data
Tlucp = E E Test
I EDi _JmEDGE[~ O
56Gb/s PAM4
cr el 1/2-Rate Slicer|o—=pd4 2 el
Dg = D1_M \‘B > EDGE
IR Tap2_| Tapp D, i 1 IDATA 128}
Summer A-DMUX Tapst 1wo floating DFE tap Dy \
CK=lCKy | I D; ls !
Timing of A-DMUX with z Clock CDR
post-1-tap |IR equalizer Path |VC[£| Logic
CTLE Tcqu Ti IR, sum Tluup 8: 1 : 2
-40°C, FF| 5.7ps | 0.9ps | 6.6ps DCC& ‘i-"'%_"
4_5/‘\ 27°C, TT | 7.8ps | 1.8ps | 9.6ps Qec [¥1VCDL | 12
125°C, SS[10.2ps | 2.9ps |13.1ps oL /‘P:D 1
N 4
I | o eoecnmaEmams " oz ;
PAM4 Se {DoYp1)pz) D3 DaYD5)]] 42
DATA IN Input Output
Buffer Driver
i B8
ecovery
Do CLK2Z_EXT (| K Test

[ 8l 2] 112Gb/s time-interleaved PAM4 RX2| Architecture

X XpE R

o A% MZOfst W
® ALFO0f : Reference-less CDR/High-Speed Wireline

Interface

P S
Ivl ® O|H¥ : park_john@naver.com

S| 0| X| : https://sc.sogang.ac.kr/melab
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Session 22 Advanced Timing Recovery

O A-SSCC 20252| Session 220{|A{= Advanced Timing RecoveryE FHZ 1%, XMH
AM2EOoMe 258 dd A =7 IPE0M LlSt= timing jitter, reference spur, phase

noise =X, d2|1 lock 2Hdd ZHME CIFE= 582 =20 TEEACL = MHel =

EE2 subsampling, duty-cycle MO, injection-locked &%, AlZt Y Xz 7| &2
283510 timing recovery &2 XMoot Q252 FXRECE st 22 MAlT

Ct. CHZ0AM&= O] & timing recovery HFHLIS 2 A2 CHE BEOM CHERE= #22.1,

#22.2, #22.4 =22 72t % A2 FHe = HE|stt

#22-1 2 =22 UE CIAStDOM LESH =292 RO 7|8t subsampling PLLOJA]
LlSt= reference spur@t timing jitter2| ¥ HALIZSZ FXREER CHELL 7|E
subsampling PLLOA= reference clocks O|&dlf VCO ==HZ2 AT METUTEN
timing jitterE Z0|& TX7b AFEE[0] RtCh O|If RO 7|8t PLLE M&SIH LC 7[8t +
Z OjH] 2lz HHEZ ZHHOAM O|FHO| oLt EHEPCI 50% duty-cycle RO =
reference spurl| 37|7} duty-cyclelt pulse widthOf RIZSHA 2|ESIHH, timing jitter2f
spur Zt2| trade-off7t H/HBICE ESE 7|E subsampling PLLOIA & I-path@t P-pathZ} Af
2 CtE sample-and-hold(S/H) B2E& ALER0| a2t MEE AE S LX|Z2 21Tt timing
mismatch?7} Z-digh = QUCH Ol 22}5t7| fIot W2 = multi-stage S/H 7F&2L HE
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rleave oNIRCE :
N interleaved HINI'(S] : (14 KppHrpHpeo)(1 + Hixr)

filters .
UM

Linear frequency Log Iru]m.m:}

[12! 3] TDC 7|¢t DPLL 220} & o=l ADSCO| °JEI AT

Bt

Magnitude
é =13

Magnitude

THE 2=, N7HQ| interleaved integratorsE ARESHO] PLLR| transfer functionOfAf
fractional toneO| LIEtLE X|EOMCH zeroE PHEO! 24210l spurg ZEHASH= &HAIO|CE
Olg{gt YAloZ O|MO| Ot Z1 DITC calibrationit= CHEAH 1 O ei=x AMZO|E F
7|180|H B Hdg = 7|0, ET LMS €12|F 8l0|= DTIC gain error, 4= 9]
7127] H=, ADCOIM Ol cap. Mismatch 62 25 E&g = UCts HoM FES X H
Ct. AMXo=ZE 65nm SHOM 026mm2e| HXMO=Z 211fs RMS jitter® -68.1dBc

fractional spur| 2t 458 E0FRULL
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Session 10 Low-Power Transceivers

O A-SSCC 20252| Session 100 M= MTEH 24 47| & SFUIE FHZE & 4
Ho| =F0| HHEL[QUCH TMYM RF F=417], always-on wake-up receiver(WuRX), multi-
band LPWAN E&A|H, polar receiver +Z& & CHEet X EM 4 OF7[EIXIF &
HE AL 2 2|H0ME #1013F #102 =29 3|2 7£Xxot 8% YA FHoZ He|
SiCt

#10-1 & =22 3= QTS no|N st =22 =, BLE =470 Mg M
22 E FA0| D28t passive mixer 7|8 RF front-end +ZXE HQASHFCE 7[E zero-IF
BLE &=4I17|0 M= RFQt Y3 Fht=0| LOE AFE3h= passive mixer TEZ Ql8lf, LO
DZxEI G423t switching nonlineantyi Qs 25t blocker SHEOA MM Xot7t Ll

ot= 2XM7t QUCH O|E St7| sl =20 M= 39-harmonic time-interleaved
A7

18
OF r

|= 6-phase non-overlapping LOS 0|&

passive mixer +XE & =l
I, LO FLt+E RF FheQ| 1732 EF0| LO buffer?]

rx
|0
u

ot 6-path mixerg 7|

S Fhteet Y ARE AAAZICE £ time-interleavingE S0 mixer £22/E0f
2 HMHY =20 AZHoR ZAMEEE F-d5IRUCE Mixer O|20= reconfigurable
AFIR(Analog FIR) ZE{E X-83}0] baseband CHYZE A QIF tE M= AXE =¥

OICt AFIR X E S0l baseband ZEHZS OI2Z21 FYOM FAHYUCEZMN, =2 MHE
Lot HEHS SAI0 FMoicH £ Z1h 2 #=417]&= OO0B_IIP3 26.5dBm, SFDR 80dB,
ME AR 415uWE 2 SHRICEH

Proposed 6-Path 3"-Harmonic Time-Interleaved Receiver
3rd-harmonic

time-interleaved mixer /" j AFIR
/; )
T &= @ (o
RFln E—v—m—[ I N 6FLO _\ DC
DC 3F;, T T =
SR - SSS——— & LO Power
6-phase LO gl w— n_::g:s (2 Linearity
ﬁ0:1 [3x% _ﬁ!F —H—F‘ LOu! &5 Adjacent Channel REjection
| L L0k (L) Noise figure

(A3 1] M=l 6-path 3-Harmonic Time-Interleaved Receiver



#10-2 & =22 H7IEE YIS IS w et ASTAROIA HE
1 wake-up receiver(WuRX) TtZ=E H|QtSHRACE 7|FE WuRX
-7501 1% RF front-end2t LO7t &£ 2 S o= 8% o

=S
SEP RF front-end= wake—up Mz IF EXSHA| = HEE2 A7t SeH0e TMEE AR
StA EICt Ol Z0|7| s & =0 M= sub-sampling 7I%8t RF front-end2} duty-
cycled &2 HAZ KEHSIRCE RF Y= AMZ = 12-path passive mixerE S8 AlZt S
oA sub-sampling=|™, 0| MFot 4EO=2 HBtEICE O IHOA FR front-end= &

= SASHA| @1, Mz AE0 2ast #24oMTE Z-Ed3tEDE Mixer 0|2 0= complex
envelope detector?} H{X|Z|O| RF tigl XNE JHE FESICL O0OK AMZ9| B2 T=E
Mot AHHOZ enveloped| BHIE|H, FSK A= 0| A% FIhts= X0[0f [}E envelope
I Eo| XtO|7} ZEOAM FREICH FZEE envelope 2Z & comparatorg Sl CIX|E
MBS 2 HE|0, correlatorO|A] O|2| o=l THEI T BB E|Of wake- up o{=7} AN EICH
LO dEE0|= pulse-driven MEMS oscillator7t AFEEZ| ALt MEMS S Z17]= injection-
locked @Al 2 FEZL|H, = YR A HA HEHO| LT M E O|-9-0|-01 ot T

5 O|HX|E ZEQICt L3t 12-phase ILRO T+ZE Sl sub-sampling mixer +&0| ZQ
¢t non-overlapping clockO| 4-dEICt. X 2tEl WuRX= RF front-end, LO, baseband 2%
O] 2% bit-level duty cycling ZHAo2 FSASIEE LML UCEH HHY 74].'# = 7
= 930nW & AZ0|A OOK -93dBm, FSK -90dBm2| sensitivityE = a5t

Bit-Level
Duty Cyclin
FSK ty Cycling Wake-Up

%% [ | [comomar}——

A D2 |_|{ ) E2 F
830MHz [y 12-Path p2 "JE2 Fsk Comparator | | I |
RF Input g_— Passive Complex Envelope
g Mixer Filter Detector
ra . ™ Y
[ Local Oscillator 12 Phases F S A WM Cwmm D1 H—m— E1fU UL
Pulse e Loy

g B p2— r‘fHur E2 LU
829MHz | Driven O _I_ITLL m

D:c?lﬂ?ur Injection A pyppgy INEREL L D1 | E1/ U U )
Locked 276MHz OOK: A W—IN—W— C% w—w— M_M IE2 L —

MEMS ILRO AN 5 5 )
=T S '

[2& 2] M=l pulse-driven MEMS oscillator 7|8F WuRX 12
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O] 2025 IEEE ASSCC SymposiumOf| A= Wireless #t& CHA 71| M40 ERICE O] &

= E2[F0ME= Session 130|A KKa-band CHYL| phase array system & H, 2|11
Session 170{A] Ka-band oscillator =&7tX| & AN ®HZ CHELCt

Session 13 Phased-Array System and Components

#13-1 ORI 2|HEY =22 IS AUNSHO| Kenichi Okada wE IE0A &

HDH "A Ka-Band Time-Modulated Variable Gain Amplifier with 30-dB Gain Tuning
and <0.1-Degree Phase Variation via Duty Cycle Control”O|C}t. 6G % 2|8 45
I3t Phased array systemOfl Al gain controldl beamformings I3l variable gain
amplifier(VGA)7} Z==XO|Ct. SIX|2t current-steeringO|Lt gilbert-cell Z2 7|&
o 7|'#E2 gain tuning rangeZt XMetE 0|11, gainO| W& M phase variationO|
o THEO| UELCH 2 =2 o2t Z2HE &S| fI8] Time-Modulated
SchemeE HE}SLICE Ad OFO|C|0= HEZO| clock signal®| duty cycleg =
gt VGAS| gaing HHECH= oOfO[Cjofo[Ct. AZ 10M =2FUX rfil=7}
clock 2=20{2|3f sampling0| &l= IFIOA Xl 8= harmonic ’S—E—Eol R
SHX|2, F71H Q! band pass filters: £8j 8= RF AS3 Z3ASICH= Z{0|Ch
O] gtAlo] O|2HX XI0|= Duty Cycle(D)Ol M2t 20logDZ ZHEICH ESH duty
cycle?| HgEot 2™EEZ {8 OB 20| Lt2+= dcc(duty cycle control) loopit
PMC(pulse modification cel)& &4 X FHSYULCE CMOS 65nm SE2= A &
Aq, 2O HAEEZ 1150 um x 280 umO|D, gain0l M2F 4.9 mWOA 103 mwW2e|
oY E 2250 Z™EZ T maximum gaine 29.6dB, 24 GHzO|A{ 29.7 GHz2| 3dB
bandwidth@t DCCE &3l 30 dB2| gain control rangeE 7HX|11 £t gainO| B
[ phases 0.1%= O|TteZ BHI}PSM OP1dBE 28GHzOIA 12.5dBmO| ZHHENA
Ct. time modulated & E &3l ka-bandOlA 30dB2| -2 gain control rangell
M= phase variationO| 0.1 0|2t 2 QX|E|0{, 243t phase stable®t 7| HS
M| FSHRACE

I



,‘ Element LI%
RFin This Works% _ 2~N BUF ¢
ouT
\l/ /\ —0
by BPF
[ DTC
Element1 & = LIlaBUrf2 (a)
Element1 = Tpcc CLK\
RFIN(t) = ASin(Zﬂprt)
I A— A 2, si
Ao 0, | ako-p+ S D) 5 cos(zmnt)
fre fre-feLk frefret oLk =
T 4 BPF RFyyr(t) = ADsin(2mfgrt)
? ? R i i +A sin(nmD) 2sin(2nfgrt)cosunfcyxt)
-fok 0 fCL:(f fre-foLk fRFfRF"'fCL’:( 7121 nt " e

2%l 1.(a) Architecture of the time-modulated RX; (b) lllustration of time-modulated VGA

operation in frequency and time domains

1.2 1.5
_ 1.0} W - T __ 1.0}
S osf 2
P g 0.5}
=X 5
= £ 0.0
S 04l o
£ € .05}
< 0.2f <

0.0 | 1.0}

-0.2 L 1 L L " 1.5 . 1 1 1 . L
98.5 99.0 99.5 100.0 100.5 101.0 101.5 216 22.0 224 228 232 23.6 24.0
Time (ns) Time (ns)

(c) (d)

12! 2. Schematics of (a) DCC loop and (b) pulse modification cell; Simulated results of ()

duty cycle tuning by VREF and (d) transient



#13-2 O|H0|| 2|REY =22 H2oistno| Baoyong Chi W= 1F0|A LHES
"A K-Band 8-Beam 4-element Phased-Array Transmitter Using GCPW-based Beam-
combining Network and Compact 8-shaped Coils for Satellite Communications"O|
Ct XM =(LEO) l’dS4lat, 5G HIX[SH(NTN)L| down-linkE AREE[= K-band
HAME =2 path lossZ2 28| multi-beam phased array systemO| ZQSIC} B}X|
OF on-chip multi beam A|ARS FAA[O| Cr=9| functional block X0 &
flojot2 o] E& M, Block 7t isolationl] O{2{&, 3 It 202 MElH &
M7t ULk 2 =22 O|AZ &S|/ GCPW(grounded coplanar waveguide)
wiring TZ=2t, JiMEl 8-shaped coil techniqueE HCtSIICE 730 MK =5
EXE 8712 beamO| E0{21, 2t 4742 channel2 AA 32712 outputO| X
X 4712| balanced power ampliferE &3l =7t & E&|=0|, O|M0| Flip chip
packagingdl ALEEl= bumpE pathAO|Of HEX|SEY isolationS SH&AIZIR £
T 39| HARMO| 2Pt SEU(single event upset) 2FE HX|SHIXt Majority
Voting Logic 7|8t°| Fault-tolerant Resister cell2 & HSI0 SPi(serial peripheral
interface)2| AME|HZ =RACE 18 GCPW combining networkOf jumper=0| line
O| bendOtCt CHEMOZ HYX|SIH gain matchingg ZF&A|Z|2 dummy traces
2 signalZte| coupling2 90t 0.15 dB2| gain mismatch Zt22t 17dBQ| Inter-
beam isolationg &AM, 118 30| LitRUA= 7HME 8-shape coil TZE &
Sl 34%2| WA ZAQF 0.7dB2| Attenuation F&E &S EIUCH CMOS 65nm
SYECE AU TH T2 7.32mm x 4.52mmO|H MEE 453mWE 225}
UCh HF A 17.2 GHzOIM 21 GHz2| 3dB bandwidth@t 327§ X{'E7t2| 0.8dB2
Gain mismatch& ERACL HetEl =& S SAI0 8702 beam= A& 5=
phased array transmitterE T3t 1 multi beam beamformer C|XtQI0| 2%

ol 7|ES HetstALt.
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“Chiss_J
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Antenna2 J;_@] Q Antennad
UV

s A
(b)  Bump Shielding ((c) A
= High Inter-beam Isolation b Q
> Clk A
Beam1 ; Beam2 _ o ale B
ISR~ on > Clk o ¢
SEL
PCB b ol Dty 3w o
LK > Clk © Output unaffected
L )L © Error Self-corrected )

& 3.(a) Block diagram of the proposed phased-array TX (b) bump shielding between

beams (c) SEU-resilient register cell.

0 S k24=0.015
I o I A it =D |
X XXX '
‘A No}y © unsymmetrical < Withvia ./, - L2 L4 't I
@ y ¢ . A2
_—FE ‘g“ .\ . :.i 165um
Addvi c1 PEanng,CICE;_; H : | !' Ll
vias 0.
l © symme(rical\ E'“ - 250um D kit Twisted
g - = t0
~N———etE e e = = ° 1 1 0 | crommmmmmmemmmecemees 8-shape
l“’d"“""“’ « ATT Error -0.7dB 0,007
Al © Better Isolation u L3 . _' o Ind k13 kas
ATT Height -34%
VS \ Normal | 0.021 | 0.015
S et == I k0021 Vet .. 8-shape | 0.007 | 0.004
c1 Frequency (GHz)
(a) (b)

12! 4.(a) The proposed GCPW-based 8-to-4 beam-combining network and comparison

of different GCPW wiring schemes, (b) The proposed 8-shape coil technique.



Session 17 Oscillators

#17-2 O|H0| 2RE =22 = W7|s=tu(USTOS| Yizhe Hu naH 1
S0 ZEDH "A 25.48-29.25 GHz Rotary Traveling-Wave Oscillator Achieving -191
dBc/Hz FoM at 10MHz Offset Using Ring-Interleaved N/P Cross-Coupled Pairs in
22-nm CMOS"O|Ct. 6G EAI0|LE Al Z2MMZ2 AAHIO|A High-speed multi-
phase clock generationO| E==HMO|C}, RTWO(rotary traveling wave oscillator)=
multi-phase A2 E WdstsH FxFe=z=  FHEOl UKD Switched
capacitor(sw-cap)2t -Gm cell0] AE JAJU=H A=QI8] 7[E LC oscillatorOf
H|3{l Phase noiseds0| ¢tECh= THEO| JUAFLLCH & =22 Ring-Interleaved
Nmos/Pmos Cross-Coupled Pairs TtZ2& M|t LIC 7|E2| Back to back 2IH
B Tx=7t 8712l 2O E 0[85t0] 8712| differential 412 & 16702 phaseE
Aot gtH 2 =F2 4712 Nmos pair2t 47H2| Pmos pairg InterleaveStO] HYX|
SstRid, OZQls) FO{E7tS| matching inductor®l Mobius Ring® Common
mode inductor2 AtE3t0] F7IHAE l0] =2 Common mode impedanceE &
‘43t Flicker noise upconversiong AXSEA L, sw-cap= Nmos2t Pmos pairl
SA0| HiX|SHO] 3%k} SR YN E0| Capactive pathCHA! Inductive pathZ2 S2{50]
7t FIIMOE Flicker noise upconversion2 20t phase noiseE &fA|ZACE
CMOS 22nm37d2 0| 838t0 A LA 25.48GHz0|A 29.25GHzE tuning range
7t 13.7%0|1 1MHzO|A -105.1dBc/Hz2| phase noise?t SHEER LD, MHADT
88mW=E Of% 0 RWTO +ZXF0| XZ2E FoM(figure of merit)Zt -190
dBc/HzE Y ZICE 2 =&2 NmosPmos pairE &dll LC oscillator 22| ds2

kRl RWTO 7|82 N CtSHRILCE.



12! 5.(a) The proposed RTWO with ring-interleaved N/P cross-coupled MOS pairs and a

dedicated supply scheme.
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Session 28 Advanced Transceivers

2 7 S AILE2 O 52 HOH EED S8t oMol etydds SA0 &
T oLt Session 280(Al= Ol2{gt 270 FSdl, 7|E 47| Ot7[HX2| StAE MZ2
FZ Mo 722 =oiet Polar PT-RXQt, ZZ|0/E I} CHHAM 2= Halo| IHE g5 A

StE ™ XHEHeE Temperature-Compensated LNA 7| =0| 2H | QUL

#28-2 Coherent Polar PT-RX

28.2 "A Coherent Polar PT-RX for 32-APSK/16-QAM/GFSK Demodulation with High ACR
and Relaxed 1/Q Generation"2 7|Z2| Phase-Tracking Receiver (PT-RX)7 7t&l L+ =& ot
AE ==, DX BME YA(High-order Modulation)t Z &%t 7t HAH(ACR) &=
SAl0] 2det Mz2 #L7] O7|HMME H Qtetrt.

7| PT-RXe= MTEH EF40| FO{LtX|D, 2[4 57| FZPLY) 7|8 5%

Bandwidth®} Stability(2Hdd) 7t2| E0|E=7t AL =

= & AEX| T Bort SoHEX| L, 95 HI

(ACR)O| FfoliX|= FaiOp7F ARACE Eoh 2l
|

ZotEl QAM Z2 A BZx LMD E 5X5

-
\d

of =&

rlo
4
N
Pal
s
0=
N
>
Hu
o
Ho
>
i
ot
Y
batl)
in

Additional Zero for Stability: &I L{0|| Delay-Locked Loop (DLL) 7|2
LU= 78S YL O|F &3 = id=s &9 ¢4 HA
ME, S22 ¢4 O E REE orEd

o
= == 5<)
Closed-loop RX & %[0 =F2| ACR ds5= F UL

el

7~
o

r

Coherent Polar Demodulation: 2% (Amplitude)t 2|4 (Phase)s =28 Xz2|slL], 0|
CIA| ZAetst 2 X38t= Coherent Polar +XE XHEHGICH EHEO| 7|& PT-RXOA = £
7Is3E 32-APSKLE 16-QAM €2 TI&E HZEIF ZoE Mk HE5| 522 ¢+ U
CIol, I/Q 2 7tol BEH™TH(Mismatch) MM T X2 R T



= 24GHz CiSo|M SESHH, 7|E PT-RXS| MTY FHEES Al
TAaS ”f"M?IE AME =27 ERU= HIHR =L

[ |

-cell linearizition Digital pre-distartion aw.;mlsucnoncn 5]

n-qg‘

=

L\

.... lﬂl

e P L puliinee 1| Flexible configuration. iy 0]

(Z) simple to implement. (2) Lineaity <> Efficiency () Decreased resolution. CiGood Eff. &unennry (Z) Lirmited Bandwidth,

<IL:7>
A ) ) | g }
g | Calibration Vou kg, [ i
a 0 ;
Algorithm L0] | subsamping I | i
Phase Detector = i a) ;
BBC,g<11:0> ; |
| s e o Proposed Foreground | ¥
! mping R
Lo: [ ocoL | Self-Calibration System) ey

Ganel Linaarin

o o ——— = —————— == @ Supparts High bandwicth.
PA Working (LUT mode)

[AE 1] & FFOAM HAISt= DPA T2t Al H|lw

#28-5 Temperature-Compensated mmWave LNA (PILTOM)

28.3 "A 26.2-41.3 GHz Temperature-Compensated LNA with Phase-Invariant Loss-Tunable
Output Matching Achieving +0.0011 dB/°C Gain Variation Across —55 °C to 125 °C"2 5G
NR(28/39GHz) 3 %ld Sil(Ka-band)S ¢let EE|O/HII LNAZF I32Ho] 2= 2HE(-
55°C ~ 125°Q)0| M= Lot d55 FAISHES ol= HUHQ By 7|sS HM ettt

—

Y20 HO A[AHEE 22 J7|X|=Z0|Lt 2d BHIHMNYE 2= Halst S4st 240 ==
EICh 7|E0s 227t HEIH EWMX|AHO| HIO|O{A MYEZ ZHE O|F(Gainjg XHF
2| oLt O] 22 ESXIF(NFLE MEHEd(Linearity)l| XX SEHO0| E0{X|= X7t
LHHACH 52 HEo| JHH 0|5 FE7|(VGAE F7I8 0|52 EFSHI|E X|TH O|=
My 409t & HAZ SIHA7|L 2|4 (Phase)0| E0{X|= RXES UL

siy RE2l= CH3dh 20 EWX|AHQ| HO|OlAE 2E7F B ahat Z(F o ds(F
N ES 2D dYEd)E We X DEsioh Al LNAS| £3 o HEYIo &4
(Loss)2 OMISHA =EY += U 7Is2 E0iM, 227t RHOtN 0|50 AXH =4S

=21, 2&7F 50t 0|50] 28 £48 20| Y422 AN 0|5 T3 =4l



d2|3n Ghes| 4T =H5HE Q0] HE = A=, O 22e 7tE MY dHE of
= VCTet TransformerE JustH Zgsl, £42 =2 ?ld2 HoHA| HES 24
ULCE.

0| 7|&0| ME8% 65nm CMOS LNAE 26.2~41.3 GHz2tE 02 H2 CHAOIAM SEkStH

-55°COI Al 125°CTIH K| 2 &7t tﬂo% S0t 0|5 HztE0| +0.0011 dB/,CO =1t M=
2 Yo It 2k BEY Hs2 HOFIULCL Ol FIHHQ MY AL HY F7t
NO|= A|AE MEIEES QW&*SE =2 = A= 7|8, &= 6G A 2F 4 200

Mol 287t Of? =& A= 7|WEC

_|

[Zero-Temperature-| v/ l’f";“lfg“:”g:'nTﬁ o
e £ I uctuat
Coefficient Bias 2 Lo

& Low gain

| (ZTCBias) | Vi +> [ [ Vour @ High NF
=) Low power consumplion

ZTC Bias Point / Simple structure

)'p'r,q',r Mediocre TC range
Mediocre gain fluctuation
From bandgap Vout Mediocre gain
- Mediocre NF
Mediocre power consumptior
IAnang Adaptive Bias Feedback © Simple structure
| PTAT | Veu Fixed -
PTAT "F' Iy | I Optimal Bias &) Narrow TC range
Temperature | Adaptive Bias s C-VGA :‘j_eglocr_c- gain fluctuation
Coefficient Generator Lo g
Synthesizer(TCS), | (ABG)

- - High power consumption
ABG-Based Bias H qu out () Complex structure

Self-Balancing

JCTAT”ZTAT
frombandgap E—J(CT VGT2
I

WideTC range

Fixed \1\7 k ': 'tl.ll gain fluctuation
Optlmal % Uy s Vo . I\-1ef|zcrre gain
BIaS Vrn / Lt . LU'.':' power consumption
Loss-Based Gain Loss-Tunable © Simple structure
Compensation Matching Network

(32 2] 2 AFOAM HA|SH= H-PCA X MAHTOl H|W

AP B

BN
A2 0F : Body-Channel-Communication Transceiver
Design for Body-Area Network in Biomedical Application
® O|H 2 : dongyoon.lee@kaist.ac.kr
® ZI|O[X| : https://impact.kaist.ac.kr
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Session 19 High-speed, High-resolution SAR and Pipelined ADCs

ADC A& FES| high speed, high resolution, low powergE sA|0| &5t W=z
Hzsl 2tCh S48 ZEEUEO|M = TI-SAR, pipelined-SAR, ring amplifier 7|8t TDC-
assisted, hybrid & 0| %5084 ADCO| F& AT HZ O|F0 21, loT- 4N

OIE O] A PAHO|M= NS-SAR, Incremental/Zoom ADC S2°| UK & N X7t
T2 HPEACE ot WAl CIS column ADCH CHE array 7|8 =X, J2|1
cryo/edge/Al 7t57| & S 380 xF3tE HEE ADCIHA| sEHH, 88 =0 ¢l

0]
HE Q7 ArYnt AAH HEH0o| ME3tE|= FM|IC ASSCC 2025 Session 19= 0] SOA =
M.BM SoCE 7HYst 12 ADCE %"EIEE-array IAxE ESt A|AH P B

E LES
= o
2 &d0 =FE &E =252 9= ULt

of
Ofm
>

-

I'-I)f

#19-3 TDC-assisted Pipelined-SAR ADC

19.3 "A 34mW 64.5dB SNDR 800MS/s 12b Pipelined-SAR/TDC ADC with Parallel
Amplification and Quantization" Pipelined-SARO|A Z}& 7ICHER 252 Residue
Amplifier(RA)S| HA £EZS £0|7| s &%t TDC-assisted Pipelined-SAR A& +X
7k, CHA] VTC/TDC ZO|M speednoise E=2 X &S JHRE d45l= =&0|CL
R

7|2 HMZ 2-stage TEO|A 1EHE “SAR 7|8t Coarse Quantizer + Tt RA'E F11, 2
ThS "VTC/TDC 7|8t Fine Quantizer"Z F0{ %81 RA 84 242E SA|0 E= A
O|Ct.

=20 M HetstE FX2E= 1st stageOl|l Auxiliary 8o SARADCE F11, 1 ZE & &%
6b= 02 MDAC(CDAC1) 01| feedbackdtO| coarse residueE Tt=

o %2 CDAC2 B2 2 E7 2 LSBE SAl(Paralle)= Xz2|5t= 0| =H4O[CL O|FA
St SAR 8bE & MDACO| ZF MX| @1 6bft AEF MDACIO| 27| I{Z0], MDAC
Of AQH 32t HW =0 IE X2 =Y = AL, LIHX| 2b= RA 5F Tt
HMHZ ZHE[ZZ2 K conversion latencyE THEE = QUCL Residues T

loop Floating Inverter Amplifier(FIA)Z 2f 108 = S F|, 2 CDACRE &% VIC
of o8 AlZt o=z =HBE| 5b TDCZ} fine quantizations EES| xZHo=Z
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O] OFZ|EHIMO|AN 83t insight= "TD ADCE %2 2 H
SiCt'= 2 0| 834K, RAQ| 0|5 27t MY HE 878 AA RE ZAO|CL 2nd stage
7} SARZt OfL|2t TDCO|EE, 1st stage RAE T&XQl 10|5- KM= ringamp CHA!, O
Tt open-loop FIAZ &5, A HAMME ©XH ADC M3 34mW & 2 1%
OHS RAO| ZESIHM 12b 5 FHEE Pt Eot vicel & AHMAIHE o2l
CDAC1Zt 22|38 A2 CDAC2(OfFHE MEE =N V2T Het AlZk2 =04, TX|
Het £ E 800MS/sHA| E0{ZSRICH ANEL=Z 0] & 28nmoi|A TH R E 12b,
800MS/s, 3.4mW, Walden FoM 4fJ/conv-step, Schreier FoM 173dBE g3l Wi-Fi 7(4K
QAM, X|CH 320MHz BW)2| H|O|AHHE ADC T2 OIQ {EXOZE ItEA|F|= 1
AHE 2O ECE

[Pipelined-SAR[2] Proposed Structure
STG1 STG2

+
6b SAR b
C DAC

STG1 STG2
Power efficient Good linearity|

Vin

AD I
5761 Yo e X Yo eor)
STGZ:X Conv x s X Conw x:

TDC-Assisted Pipelined-SAR[5] ;
STG1 Good §TG2 Noise tolerance

lineari
il | ARG GO o
g i Cony
T r o -
= L | !

: <1:s>‘: .
otteneck | [az]ifs TS XX R EmeNemX X

of speed ey L

Vet d noi Noise .
and noise. wieaneel 7.7 Y@ Y o) e e D)

—— DAC1 Residue Generation
STG2 x T2D X RST X 72D x —— DAC2 Residue Generation

[AE 1] 2 AF0AM HA|St= TDC-assisted SAR FZ&2F B M| H| W

#19-4 Heterogeneous Programmable Converter Array (H-PCA)

19.4 "A Heterogeneous Programmable A/D Converter Array Covering 2-500MHz BW and
81.4-58.7dB SNDR with over 170dB FoMs"& Z|Z &35 9= multi-standard/multi-band &
A A4S Sl SoCOlM SAI0f X[&3HoF St 20 gt 20t A|AEXN QN of Y
M AlBCE 7|& H22 ZH F2(0l: GSM, LTE, NR, Wi-Fi)OtCt M-8 ADCE F7 L, T
dS broadband ADCE = LAO|A=H, HAt= He|2 EHINEHZ7 A0 Xt
AH|HHO| IH=5ICH= 2X7F UL Multi-mode / reconfigurable ADC= 0] 78 &0
= deoz AL oL, UEE BE 7t spec HRI7F MEHHO|AL), 280 HOIX|A
Lt, A0 2] RES #H7| O{&E8Ct= otA7F AACE

rr K mo



0|9t =X OS2 Programmable Converter Array(PCA)E 02| 7i2| sub-ADCE array2
Hi X|5F 22 EROH mep MF-yEz st ohyst RES B = A= 8, S
2f PCAE (1) & sub-ADCE T 5tA M A (Uniform partition)si OF7|EIXNE %X 3|7}

H, (2) residue MEHO| MY ZEO| fully-connected Y= 0|2t 7|4 RCOfl Of< TIZSH
&0l oKX= M7t AUACH 194 =22 0| sHZSH7| fI8H, (1) MZ2 THE §8S
7tZl 0]7|F(Heterogeneous) CoreE 410f A= H-PCA 7i'E 1, (2) group-connected input
bus + low-Zin current-mode residue busE = 26t0] SHS CHE BO{S2l Z{0| A

Of Lt

H-PCAE M 7tX| slid] @42 FEEICH AW, Big Core= 1.5pF CDACS GM-C Z2|H
IZE Zk=E 13b SARZ, NS-SAR, DY SAR, EE= Pipe-SARQ| 1B 2 FESIH, & 7
IfA|E et ©X| BZ2 &l 70dB 0|42 SNRE 27dt= ZEE AHHBICE =M, Lite
Core= 0.25pF CDACE AM23tE= 11b SARZE, M3 ZE = Pipe-SAR ZEH AH|O[X]
Of =A3tz|0f &F 60dB SNR F=FEO0M =2 O|HX| 2828 SHE HAE(RUCE Big/lite
T0f BF A|Zh QlE{2|O| Jtsdl, Big Core 37HE TIZ F0f 200MHz BW, 66dB SNDR,
Lite Core 470& TIZ S0 500MHz BW, 2 59dB SNDRS Z4ddtes & CHYst REE #
g £ UL AW, Dither Corer 3& EE ZOE, PRNG 7|8t HY/HF ditherE Big
Core2} residue busOl F&5I0 2t TIAS| 0|51t FAHM GMxTIA gaing =AtHLE FE

Sk, Core 7t gain errorg& backgroundZ JEdsh= O AHEEICEH

O] =& AAEHINMOE 7tsotA RtE= G2+ XN YHYL EHA(Current-mode) residue
busO|Ct. E2f PCAO|M = residueS MY ZEZ FMESIAHLE, HDX =2 Zin(0f: 480Q)
Of TIAE 0|8%t ®R ZEE AER7| M0, HA HiMO Z2l= 7[d Cot SdiXl=
Al &=2=(0fl: Co=100fFL [ 48ps)7t A1, Core 2t 22| H2|0f 2} £ =-SNDRO| 21
SHA RHRMCE 19.40|M & gm-boostingdt Kelvin connectionge X 8%t & A O|E 7|gt
UH FEE TIAS Zing & 4007HK| RF, Y CpollM A2t H+E 4ps +=FE2E =
RQACE O Z1f residue bus &2 I+ RCIt AME Y FA| 7HS8HA, Big/Lite Core AtO|2]
HE|(50~420um)7t 2 E Pipe-SAR 2= SNDRO| AH9| 2NMstg AMZoz HOICH
Ol "CoreE ® %[0 XtF&EA HiX[SID K| =2 AHANE ds0| XX @e"
PCAS| &FHE NE22 2458 UA YSet ALt
ZE2EEtY H-PCA= 28nm CMOSO|A| 37H2| Big Corelt 47i2| Lite Core2 T-d%|0{, NS
-SAR(2MHz BW, 81.4dB SNDR), Big-core SAR(10MHz, 70dB), Lite-core SAR(133MHz, 60dB),
Pipe-SAR(100MHz, 71dB), Noise-shaped Pipe-SAR(50MHz, 76dB), 3xTI Big-SAR(200MHz,
66dB), 4xTl Lite-SAR(500MHz, 58.7dB) & & 77f ti&®E ZEE SILtQ| IPE FASICt &2



£ B EOA Schreier FOM 170dB O| 4!

4 HE ¥ single-mode ADCEZE HHTl=
ot ALz HIEICEH ESH 1IQ ME 470E
concurrent mode S2H<

i #&=S HHSICH= P

Multiple dedicated ADCs

ADC 1 |—
RFFE ADC2 |—
RFFE ADC3 |—

@ High efficiency per path
@ High area and R&D cost

RFFE

Conventional multi-mode ADCs

@ Limited spec coverage
@ Low efficiency
& Mode mutually exclusive
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EN
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e ZI|O|X|

AT0A M AlSH=

MUIALESHIL Cf3te

b, Z|CH 176.5dB(100MHz BW)THX|

B9 ofyl 24 wNS

AlHSH, "AA T SoCO|A LS| Reconfigurable ADC IPE
PCA B|TIO| &% Jtstt &0 =2}SS

Prior work [9]: Programmable Converter Array

pon | —<0m]

Unit |
Unit
 Unit | Unit

® Flexible in architectural
level for wide spec coverage
@ Inefficient to combine
uniform sub-ADCs

This work: Heterogeneous -PCA

%

@ Diverse sub-ADC optlons
for optimal efficiency

H-PCA 7+ZQF ME O H|uw

| AH

= M=o

% KAIST
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it oH8dS OfEA =R Ao =FS 31 ULtk E3] Incremental AX ADC,
SAR

ADC, 12|41 0|59| 3lojE2|E x5 EAEOIY et [FEF 719 EZ0|ER
S

ZE 2A3steie H20| FEMLL &9 7|E FXRQ SHAE FRHLE S55iHE=
ANz7F FERRCH, 2 2|RoMe Olgst S &S & CiEsctn HEEs & HO| =
== ME5HRLCE
#9-1 KAISTOA ZESH =292, Incremental AY ADC2t MASH X & Z&s Two-Step
StO0|E2|E ADCE M 2FBICE. Incremental A ADCO| =2 DC HEEE RXISHHAMEZ Of
AE =Y Al 45 XMoot 2lste 2ME SiZ5H7| fIsl, &2HOIX| 2t 0|F2 A&
2 ZHdl= Automatic Inter-Stage Gain Selection(AIGS) 7|#2 Z=SHRCH FY Zof,
MetEl ADC= 160 kHz CHE =0 2F 97 dB +=&F2| SNDRZt 100 dB O|&2| DRE
StR2, AIGS HE Al 17 Oo|5 2% OH| 4&0| |FoD[SHA cratES =I5HRALt
e Hot BHA| LR E Hgdeole HAL2 MY 4ARE ZO0|HME, 35 T Bt
of 2 4= Wa0| Zof ¢HgHel 3% EdE ERLCL O[3t A= Incremental AX
ADCZt StolEE|E X2t M3 0|5 MO E S 2 AZF 380 el oY
2 SA0| - = UASS EQFC

S = D

INoO- w?@"’n
viinT

U

VR
b

& >[ voum) |

. EN: s Col Filter
RST CIFF NSSSAR AIGS pgr—*4

[23 1] AIGSE HE8%t Incremental Two-Step 10| E2|E DSM+CIFF NS-SAR ADC #+%
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#9-3 Xidian UniversityO M| ZH? =222, XX J|HZ Sl =
MASH SAR ADCE H|¢tSICE 7|F MASH SAR ADCE =2 SHiA T
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MSA(MuIti—Step Amplification) Enhancement®@} Incremental Correlated Level Shifting

823810 HTZo| DWALI C|X|E Z42|20|N QOo|E 52 MEMS AxmMoz

H Aat NetEl ADCE 100 kHz CHYZ0|AM 105 dB O|&2| SFDRE 4

mp= MO 24X 9F 89 dB +=F2| SNDRZ FA[SHRUCE

ZHOME SFDR €37t MotHo=z LIEtLL 2N ddd =E9
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correlated level shifting2 &3 2IECE

M2 HEd XMot7t HuwH ATSHA LIEHCH, 184 = MASH SAR ADCOIAM 23] 2
7= St 28 228 HiMstnz: 2 A AHLo[A0 Mot 455 =HEY

Prior 2-2 MASH SAR ADC [5]

NT Fo-Eni'z) ( -
Vel % ke EwfZ) !i\':h.'l_z] Dulz) éDJ. z) P 00
A Ly ¥
Hesulz) ~ {F"_ @ 2 MES
: Wresh
* my @  MNeed DWA
Fbit MSE NS ufz)
& ‘Without zero-opt
NTFuz=1Hemelz):  NTFuzi=1-Hen(z) TDILSE NS o
Dy z) = Vilz+N TFalz) NTFL (2} Co (21 NTFadl2) EL(ZNT Fos Enf 2 ® NTF Calibration
Proposed Infinsically Linear 2-2 MASH SAR ADC
3-bit Coarse ADC 1 Guiz)
T Dhuiz)
iy @ — 40 ONS
N (Foa]
IUIIHLE:I By I D
> 2 2 MES
Hemedd) | | Hernd2) |
:: : * : 'l.I'R:_.__ 1 DWW Aefree
O NTF
1-bit MSB NS i ' With zero-opt
NT Faa(z)={ 1-He ()} {1+Herulz)) Calibration-fee

MNT Pt Z)=1-Herugte(Z):  NT Fropead 2= 1-HemopeZ)
Dz} = VindZHN TFisopee{2) NT Frogee (2)-Chu {2} #NT Fuaope 2} E0 (2]

[3 2] 7|& MASH SAR ADCR} M|9tEl =X & MASH SAR ADCO| H|w
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Session 230 A= & 5H2| High Performance ADC =&0| ZHE|QCH, 1L & 2

FoAM CfY=, Bt £ MY g, el S3F-2-0Y Hato| et 2dde
o] &2steis ARLS0| TE O|FRULCE Pipeline SAR, Noise-Shaping SAR, 2|1 CISE
C & 88 XXl F27t Ot HAERJACE 2 2[FROM= O F0

=
S

=

!

o

Column-Parallel AD
= Noise-Shapings P3Nz HE%ot X, &A A2 22X
D, DY SHS ASY AlZets BHOIN, £ Ho| =22 MM

— - — O —

#23-1 University of MacauO| A ZH?t =& 22, Pipeline SAR ADCO| 4X} Noise-Shaping

% % 2HF0M X} Noise-Shaping H& Al
7

|
SNDRE Hd5lel, &8 AHEHZ S5 Y= 4% Noise-Shaping £80| =l
] = S HE0| X3HE/0f, 14 ADCOIAM QFL|
ZO|M = X} Noise-Shaping0| A&

v Qr‘ 5 Qi 15t stage [Samp.|[ Conv. I Amp. ﬂlE I N5
M e Do Uz
—@—{H @ >@+— 1/6o] ®  ndstge  mLE samp)( Conv. | NS )
Dour D[ 1-NTFi )% Vis
Il t:"-{f -fg) +(1-NTFNTF=Ae0y X Low-order Az shaping

oyt N TR T .'[“ +NTFiNTF:Q4 ¥ @y dominanied

L = Ga ot H.
Hy,={1-NTF 3NTFy2 el L '.h.,ﬂ._.,;_).:_._.-l_j +NTFiNTFG=Q;

Proposed SMASH in NS-Pipe SAR

Q4 Digital Filter Q 15t stage [Samp.)[ Conv. |(Amp.][ Ms |

| DT iﬂrq ﬂ= D; -E*+} &ﬁl%[ "
—1- G =14

Vi _({ - &, - H indstage  Conv. N5 |5 .|'1:' 2

™ . Feedback 3 tag BT, amp.|| Conv.

) Dowr=Viy +f Noise leakage Froe
- +K NTFiHpAsQy  High-order Az shaping

NS SAR w/ CIFF

K.=(1-He) [HFH 1-He)dc] L +NTFHm=Q;  Aggressive Oy shaping

Actual Implementation NS SAR w/ CIFF +KNTFNTF/G=Q:

@ Feedback Digital Filter ~ '*

'L"_ a1 i Do 18, | D 100 -

L = =3 - L =

1 Dour 8 E reduce
3 Sum S o} % 82%
Golf-8e) | % 85 g #
NS SAR w EF NS SARw CIFF  T5¢ - gl"'“‘!“ﬂ pook
—8— lassic
» Simplified digital filter, 1-He=1-(1-21)2=2z1-z2 10— ———— —
» Zero-optimized EF for 1*-Stage NS SAR Gain Error (%)

[2& 3] 7|& SMASH 7Zx2t HQHEl NS-Pipeline SARE SMASH #x9| Al 52 Gl MKy 33



#23-5 National Tsing Hua UniversityOl A| ZH3t =222, Column-Parallel Hybrid CI/SS
ADCE T A3t 256 x 256 CMOS Image Sensor(CIS)E A 2t$HC} Column-parallel ADCOf| A
R7EE 04 Bt st 2 ¢t #2EE SA "ESE A0 2 =22 Fo =

HOICt HQtEl FZ== H|[S7[(Asynchronous) Charge-Injection(Cl) OF7|&lX et Hybrid
Quantization(Cl/Single-Slope) #AIZ Zo5t0, 1% S& A= Hw7| X CIXE |
ofof w2 x| ot H|M$4M% X235 QICEH EDF Dark Frame Calibrationg &off Z3 1L
g oE HSFPN)E 2UtHo = MASIACH =8 2o, MeteEl ADC O{20]= 435kS/s
Hat 0N 2F 96-bit =F2| ENOBE Edst¥on, ZH 7t HFLHE2

ol I:I-IO|
= ! -1 OT
oM 1.2 LSB O = Mete|RICt A O[O|X] &N ZuME Z8 08 IE &5
O] ZitH 1HEE =olsiyon, ol if2 HE ADC Of0[o M= QHYX Ol
SH0| 7tses EOFEL Olz{et Zits Metel HISZ| a0 7|8 Hybrid #+&7F &1
SIAME CIS 280 MTtst A dskolg Alx=oz Q=ESIC}

I Row Control | | Ramp Gen | I Counter | | Digital Output
1 1 »
¥ | ¥ ¥
[ ""IT—I > — 15| %
a | £l 3
- [ . Column Parallel s =S| B
i Pixel Array Asynchronous < {E E
i (256 x 256) : - Hybrid CI/SS ADC el o e E .§
O IR L ]3] &
] —

Ve, :input lower bound

Viesw :input upper bound T2
Viome : M5B comparison threshold :l

Vi : range-extension reference Veamg

Valid_CMP
N [valid el ——
HE fffff J

[,r’mﬁ Wi.l’dr

+ Shit

- g O

1
B

\-l-l-—q

¢| counter
Global Fﬂ;lvufl‘l'vsﬂﬁ‘"'""" [ . Asynchronous
Ramp [, () () Asynchmnous Cl- cnll Logie control

[O8 4 CS Z2EEY FxQF Not=El 23 HE 310|E2|= CI/SS ADC
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Session 3 Domain Specific Accelerators
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#3-2 Birch: A Real-Time Accelerator for Multi-Task Mixed-Domain Extended Reality

Perception Workloads

Characteristics of Ideal

Vision i IMU Cam Pose
. i Vision  ¢o--(h Visu.al | Accelerator for Complete XR
' " Geometry . Inertial | Perception Pipeline
) . Statistics ‘o-n Odometry i 1. Support for all multi-task
L 3

Fy S f / """"""""""""""""""""""""" multi-domain workloads
Audio Perception !
=
=
(=2
o)
g
3
o,
3

match incoming sensor data
Renderin, - -
. 9 3. Area-efficient design for

+ Vision

E I:lAUdiD 2. Real-time processing to
% il : @
i Do

| Eye Tracking % "
| Object DNN «— AN S b
Classi#ication H ?-‘?QvSéay.QQ?QQ [1

Visual Inertial Odometry (VIO)

% Runtime

small, compact XR devices

. Perception

Perception dominates latency
and must run in real-time

MU Iﬁt Rﬁt x] g MU
vy Prev Left %S (200 Hz)
Vision Update 2 Imagg IMU
3 | F:E!ii-na‘ Integration
State Update ' pose | ™ML Histogram Track Features
aé . State Left Equalization Across Time
@ | 3 .
R Ea0 159ms| |§ Image Pyramid
@ A e
v £ — Qe F'-_, Generation FAST Feature -
Se | | P [c A Festure Database [d:(x.%
@5 g 2 i
% <30FPs |3 Right ¢ (Equalization Detection] | add New: | Left Pf}‘P'.P?'Pi*.P"
Oper;‘VINS [6] on TUMZV\ Image Pyramid Optical] Features Right
with Arm Cortex-A7Z-.. i Fl
application processor - I"‘ Generation s

(22 1] AA|ZHE0| 523 XROIM VIO2F DNNQ| 7t

O] =2 extended reality (XR)MA X|Zt(perception) LIO|ZEIQIS 2ME| SIEQNZ
2Ot = AEE EXFE SO|22 ATOICE Birche XR A|[AHEOM SEXH2E Y
Mste 2X, F, visual inertial odometry (VIO)2} DNN 7|8t Q1A ZtQi0] MZ CHE HA

AME QFSHHME SA0f MAIZFSZ K2|Z|o{of stCh= Hof Cis stLtel SoCof
M od UA 385t A Zoto|ct 7|E ZHFY Z=MMO|AM= VIOL| vision update
CHAZE dSet AMZE XHX[SH 30 FPS 72t /IEEX eHEH o= XNE|5H| A=

= =
O, Birch= O] 28 StEAO 71522 ZoH22M 2AZHES SEHL.



Vision accelerator?| w+=& EZ2 H|LX H=oE HO|CE FAST 7|8t E-E A=, ml2t
O = 44, optical flowe Z25F Bt=5XO0|1 OO|H ®Z IfjEHO| F3510] StELO |0

ZepQlo Mgtet ALkl Birch
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N o M, 3% HI, Hs HEe Z2 1FHe
dHE| 7I8S 4 BAO HEd Cpu HiE| 2 XF ZAE ”RACEL 59| Optical flowdd|
N EHE HE b /K| YHOIES BXlE EH2 7o P
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Birch7t DNN &4 ZOME HA|Zt 458 ZES H2 S0|ot Zu2t7|Erh=
systolic array?t BF16 HIE RRA2 &) ALESt = HES=E HOQICH

DNN Z2o| 2= Oin2 20| v ¥z Xa NFE IjEHS 7| H+01|
32x32 systolic array @& 22 HEEA FUAO|EZt: HE3| d&0| LI=2LCt Eye-Gaze
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#3-3 A 96pJ/Frame/Pixel and 61pJ/Event Anti-UAV System with Hybrid Object Tracking
Modes

Event Signal Processor (ESP)

Event
Stream | Frame Builder Noise Filter Region Proposal Unit Fast Object
bd (FB) B Tracking Unit
Frame Mode: CCL-based RP Gen g
AER Interface TT1T T (FOTU)
RPRT R e _
S e,
Frame Mem le—1|
(20Kb) T | | Trjectory Recorder
Noise Removed Lol

Event Mode: Event-based RP Gen. Traj. Mem (2KB)

Run Length Encoder (RLE)
oS Can Coi $1: Row,Col1,Col2
- ow,L0l 0l
i - 1 i} AXl Interface &
Sicel(ST) _ Bice2i5a . > Row.Col1.Cal2 : Config. Regs

Detect adjacent events row by ow

4——&_}

Image Sig(:'lsa}ljl):‘rouessur Neural Network Processing Unit (NPU)
|DireclMem Access| Weight Buffer

S—

Gray Weight Mem. (8KB)

T [ roomoens |
ROl Denoising Feature Mem. (8KB)
ROI Reshape | Output Mem. (2KB)

Non-Linear
Func.

Oulput FIFO

PE Array
(16x186)

Feature Buffer
Data Scheduler

[32] 2] MOSt= anti-UAV A|AEIO| SLEQ|0] OfF|ElX

Of =2 O[HE FtH2t 7|8te| UAV EX| 8 =X A[AEOM 25| LIEILE & 7HA|

=HM—1% Ol MM d& X5t O|HMIE 7|8t ODT (object detection &trackmg)

of &2 M—E Y| Sgl, ey J|uhat OME J|uh WA N mat M
she SfO|=BIE OF7|MNE Mekstn Qck UAVME A3 w2 X0t SHE HE
MOl T2 78 HBOAE BN E247t 2X0|T, W2 OME I8t WS By

15 e B

Zy2tElo] 0| MY A@J Atk S40| U7 HRO, & WAL HE
x
T

MH| A|AEI2 ESP(Event Signal Processor), ISP(Image Signal Processor), NPUZ T8 &|H,
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O A-SSCC 20252| Session 82 Al Accelerators and Security Circuits 2= THZE & 6
Of =20| HHE[QUCL O] MMOM= Al HALZ 7H5A|7|= architecturelt, AIE EE&
S TRNG, PUFQt 22 HW EQt 3|20 582 FACL

rg

#8-4 & =E2 EdgeFTX +ZXE KN QtSHX, Transformer ZEO| self-attention= FFT(Fast
Fourier Transform) 7|8t Token Mixing2 2 CHXNEZM, HiE 2| XN 2f0] F 4Tt loT H

doiziE ClHolAQt Z2 SIX| HAFE SF0M ZAl Transformer ZEE TS5t
ot & AT = Attention HALET AXHE BE2AStALE 5|4 (Sparsity)S &&%t=
oo E&st= CHAlL, FFT 7|2k9| Attention-Free +ZXE XHEHBCZM, L2|FO| A7t
SEXEE O(NHOM ONlogN)2E, & SEHEE oMHLE RHF ZEHZ ZEsY

[ =

E

=
Ct. & A= NAS(Neural Architecture Search)& 8310 D EO| ML} SIESR
SM(FFT A4t &= SRAM B2 2l 7Ho| DY E XA X|ES EHMSIQICH O ZAxf, H o
A2kQl CHH| FFT AHAR2 75%, SRAM B 22 50% =0|HAME H&: Xdt= 0.76%= &

1 Interface I |

Weight Buffer

FHUB ] GEMMU (]
[ PEG 4
e e
BF1 » BF2 Fetch : :
1t ot Buffer gia PEO_O IS4 PE0 15 [
BUF BUF TF A Regfile Psum Ragfils Psum [§E
— — £ : : E
Self-Sorting RZ’SDF 0~ | 5 PE1 15 [ £
=z Regfile Psum i =
BF1 —» ] ] : o
41 s Bl PE7 15 B &
BUF TF o3 Regfile Psum ;
Self-Sorting R2*SDF 3 g >>>>>>> E
- — < <
Ly -]
L 3
L[ TnputBuffer || | i Intermediate Buffer le=| |
L) L) ) )
GSU

[ 1] M=l Transformer 7t&7| MM =X



a8 12 EdgeFTX2| FK| architectured| CHSt block diagramO|Ct. EdgeFTX&= FFT &
At0F 7| FFN(Feed Forward Network)2| @& GiitE 28X = X2|5H7| 2I8H, 4702
A= FFT ATI(FHUB)I 8702 HE PE H{E(GEMMU)E M=l FFT-FFN heterogeneous
OF7|EIXE MASIRUCE FHUBE Attention HFLIE S CHH|StH= Token Mixings =St
= & ZE0[Ch O] ZF2 4742 XE FFT A2 FYEH, ZF A2 128-point
FFTE XN2|$Ch WE M2 2= Radix-22 SDF(Single-path Delay Feedback) tZ=E& 7|EtS
2 MdA e, 7 2 EF2 Self-Sorting In-Place 3|2& AMEMCH= Ho|Ct Lt
KOl FFT StEQIO= A Aol Fhbs Z0Q HIO[He| =AM7F F[410]7| MZ0f O
£ HIZZE7| fIet e MY E HIH(Reordering Buffer)?t E==A0|Ct 2{L} FHUB
ol HEZE0] 252 Hitut SA|0f| HlOJEE HMAE[0f XZ(In-place)stH A& =
HEX T dA 0, Mol HEL 3 22 E MAHSHY HHE 7% HUsta BHAY
2 11% E0|= ZItE ERUCH GEMMUE Transformer®| FFN @4t & & =
Sh7| gt ZEO|C} O] 871 ®E PE array Group(PEG)E &M, Z+ PEGE 12871
o PEE ZETILE Zt PE= 7IBXIE ZESD MAC LS A3 FENS| #IE A7
A2 oLz HE= Ma2[otot

Proposed Datapath Supporting Non-Blocking Scheduling Non-Blocking Data Mapping
FFNT_W_Mem | FFNZ_W_Mem - = PEG
£ 020 @ _ me L)
DI L | Di_dR £ EATH
£ D1_ri_L Di_M_R £ pEG
g D2_r127
¥ DL | DR !
21 D2_r128 sw e
DI_Z7_L | DI_27.R D2_r129
128 128 - 2nd S‘Lni‘l\atl 16th SILN‘\Iatr 128
°"‘3P“‘ e E—’% -
128 X3 4
W Bus_ 1% Fotch Buffer Output
W_Bus_2 Fetch_Buffer e PEG
= l—w}tﬁ T *W 03
0 ptr 128 1l GEMMU @ 128 R 2
F D2_ro| 256
128
. * PEG4 |+ PEG 4 () D:rﬁu
S PEGE 1 | 47 [} o
Eu“ s PEGE } - | .
£  PEGT | | a2nd
Sian Bit ™ i G "ﬂ bn
I 15
FFT FFN, FFN, — | -
Schematic of Non-Blocking Dataflow Scheduling Cache Block Status:
Input fr Input fre Input fi
mbacding mhading pm"ﬂ *"IT}: [ InA [ ]Fr
S A RN AR A A A Y
It -4 ré-r7 5|
Switch Swlﬂ:h l:l PA l:] PsLO
| weignts Weights.
F:f;-; | ‘FF:-'FJSD|F1T:YM| F;r:ﬁs’n Fr‘e’t‘l‘i?|““-‘5m‘“:-c“l'g‘| |F:=‘|;_|.!:| FFN1_S1 FF:)I_SD ‘ - FVLO
Sudtch SWIED & Az Not Avallable
FR: FFT Result
PA: Part of the Activation
: P3LO. Partial Sum ol Layer Quipul
Layer 1 Layer 2—=  : FVLO: Final Value of Layer Output

[1Z 2] Non-Blocking Dataflow Scheduling

EESh FFT-FFN SX 7te| HOojH oJEMo = Qs mo|=Z2tel StallE 27| 2I3i Non-
Blocking Scheduling(NBS) 7| &S ArE%tA2M, AtM|et dataflow 2AHZE2 & 20 A
2tolgh = QUL Ol= FFNES M|F EBfA3E LEF0f, HIO|H7t TS| ddE Wrtx| 7|
CE|X| &3, FFT Zot7t L= FA| O/ Eh2|(Fine-grained)2 CtE A0 S535H0
AL FRHOl 7ISEZ 100%0 7HUH FXISIRACE O|F S8l layer executionO ZE|=



latencyS 7|E HE 2FAEE OiH| 1498 THS5HRIC

22nm CMOS 8822 HWEI EdgeFTX &2 0.51V, 100MHz &% ZZ0A 3.6mwW2
HMHEZ A25HH, 1.39 TOPS/WS| O|HX| 288 EHESIRACE SST-2 #MX[OA0M & #
29| BERT 2 OfH| 23% =2 & E 220, Z[4l General-purpose edge 7+57|
CHH| ™2 AZE Z|Cf 176H] XEEMN, FFT 7|8 HZ2E0| REES HEOFULCL

rt.

#8-6 = =E2 ML(Machine Learning)2 =850, PUFS| MY & =2 BHZ(VT
variation)0f| 2|t Bit Flipping 2FE S ASH0At SHICH MXA PUF(Physically Unclonable
Function)y=, S&¢%t QIO[mHel DtAIE AESIHEE BeHM M SFH0AM Lddt=
Vth mismatch®@} &2 Process Variationg O|&%tCt £73 =2 Q7S M, O/MT
0 E= 1°| 2 Y2 =M Chipdl 272t X|Z(fingerprint)
PUFE &t Xﬂ Xl-'?'-QEH 7SOk SEX|BF SA0| AKX OfCIALE

mismatchg =

M3}

0:.:

7I-

O o mo
ne
F9l
nJlo rir
M
1
o O
el

= otgd8o| E=AHolnt dBfu, S22 Chipo|oi= 53 Alot
=&, MY 529 2t Hstof| 25l bit-flipping=| O error?t ZASHA EICE

7|E2| Dark-bit masking 7|82 =08t M2 &0} maskingStEE F8 0| E0E
= M7k QUCt ol2{st EXNE Si&ASH7| /Tt Reconfigurable 7|8 HEDH MEAX] HTt2
2 QI3 BER(Bit Error Rate)?t ZM3HA ECh & A= HEa 22 HES S, -40°C
~ 120°CO| M zero-BERZS Ed3dt= reconfigurable PUF X E K| QHSHRICEH
HetEl #+&2= PUF A SHLEE 367HK[2] dE(Way) 742 XSS HALRUCE &
AX 28 2M0 M3, 74 7tset 29 (N7t 71258 g & WM 38
mismatch7t 311 PHEH QI e S &3 2EO0| FOHNICH N=2 &= N=42 7|& A<}
22| N=362=2 Fstez M, 22t S Hojdt HE™el SHE dde = Us
2ES =L O|F &4l HE AS He[X| ik AT 4H|EQ| stable?t 23S ¥
T AAUCE
(d) PUF bitcell
GLg. BLL BLR GRs
- GL,
VD ——9—»
L | a1
'I VML
nMOS stack x6 nMOS stack =6 )

[O2! 3] PUF HIE M9o| 3|2%

HE do| REE 1 33 2ot M2 (Y TZE O|ROY o, HED £
A

=
22 6712l AE NMOS AB40| BHiX|Z[O] QUCt 2[F oA 217txl= AOIE M M=S



Soff the 2 W

Sl & 42 oLkl NMOS 74§§ gdstg = U =y
oM & 367HX[2] M2 CHE HF E2E g9 =+ UCL EEH S82| mismatch2
olslf MEfE =2 NMOS & Af0|01| & &/ XO|7t ZdSt, Of= X2 Bit line 7t

of Mg Xto|Z LIEFHLY.

(a) Proposed PUF array

SiocIaT %2 Sense Amp.
Gate Gate ‘ Gate y D I
Decoder Decoder Decoder | ba
% ol Sl ER 6L [6R, GLI R, | |
= PUF { PUF } { PUF
s 22 WD B oo = Cel H—¥ ca " BLL
2| |88 [w. | ! e ||| BLR
° ° - = %PUF|" _|PUF|_‘ _iPUF}_ J ™
ol SET R T | [l
z i
- &> :%”3 o PUF o PUF H—4{PUF )_ Sense
n_':r:l 2 cen | ] Cell | | cen [/ Time (TD)
HLL, BLR, BLL, BLR, H.L, BL..?-Z Detection
CLK & SA & SA & SA &
Control E‘ D I:' | ‘ |
Qg N
VAUDo I.’A.I'_JD, VALID.
| Output Selector | ™ LE>e
[12 4] PUF arrayl| 2% 3|2
HIOEl PUF array= 1 49t ZCt Cell ArrayOll = Bit line Z+2| O|AlgH Mt XIO| S

X8t ZZA|7|= StrongARM latchZ T4 E SA(Sense Amplifier)Qf, ¢t Xf0|7f =
o] ot 19| oHE MEfE T[S K] XA AlZhE FHESH= TD(Time Detectlon)7f
AZm|0] ALt Mismatch?7t 24Z Bit lineZt M2 X0|7} 222, 00t 12 O WEH &2
2[Z[0] TD 20| ZOtX|A ECt matM ZFE TD 4S8 mismatchE FdEst= XEE
AHESHA EICE MismatchOl| [HE TD gl XtO|= 13 50Af =olgt 5= QUCH TD sweep
2 TS TD 2o Bt 242 ZHHE5H0] mismatch?| "EE LIEHLL, SA[Of T
o

2 sweepz TS0l MY RIZEZ (VDD sensitivity) S HEHC}

e

'(b} BELL/BLR mismatch sensing for TD

Address
/GLy, GR, —>e— e X
SE [ ' | =
Long TD Short TD TD = TSE - TLE
R L
BLI/BLR - 1 Large ABL
Large mismatch 0 i
Qé%gate tast 1—2 ‘*r. ....... 1 lit!lg ;::.:dTD
VALID l‘_\}'1 : 1

____________ i_____'l'_________-

BLL/BLR =.==—=_.—'= Small ABL
Small mismatch 0

D/DB T "‘1_'_
Separate slowly ' ; Inl;ufa|l1|d -
VALID N1 \g _ W/shon

[A3 5] mismatch sensingg &% TDE TSt= timing diagram



oHH, 25 Higo| ME FYdES HESH| feiM= Yut¥oz =2 H|E9 =2k
chamber H|AE(Temperature Sweep)?t ERSICH gLt 2 AFM= FE THE
(VDD Sensitivity)7t 2= QIZH= (Temperature Sensitivity)?t =2 AZZAHE 7HES &0l
SIRUCE O|Z &% ML model2 mismatchE LIEIL&= TD gfQ 22t MY RZEE ¢
oz ot MA 2|4 (linear regression)E T30 -40°C ~ 120°C 2k " {I0|M BERS
0| =3t1, Hungarian ¥12|5S O|8310] BERO| X|A7t E|l& 4719 2 =TS ROt

A =T} O]2{3F ML-based selection 7|HZ2 AFESHY, ST 2= H2{0|A BERO| 00 7t

ZA ==E A EZACEH

65nm S™OIA HEE XS CHACZ HHADH 2 HAEE ZIHSI0 C}
0 Ht |

o [=)
AT RM2, 7|E FaAE YA

ZutE ¢ El HAIO|L} S ™Y Sweep HAZ
=71 BHH ML-based selection2 HHE ZE 2% HP{0|AM BERO| 6.51E-8 O|RtCZ,
Areddh of|2{7t Sl=(zero-BER) 2HEEE HOFRULCEL EME, 36-Way T+d2 @lsh 2 W
8 EWX|AH =7} 30702 S0HB0 = =275t dark-bit maskingR 2 H2{X|= A0
A0, /8 HEY HY2 674 F/bit2 7|Z DAZ|Y PUF CHH| 7HE & &8 24
SIS AR, Md=l 7|9 DRd(Uniqueness)2 LtEILE s 7 E|(Hamming Distance)
= O|&&Ql 2ol 50%01 2H3 49.1% U2, NIST2| randomness testE 25 &S1t5}H0]
Hot 7|2 MOl HehdE =I5t
X XPE B
ahd& MAtapPd Cishal’d
o A% otxutsty|s@ FMI|STRSERE
m:" ® A-1.Z0f : Digital Circuit Design, ECC Hardware Design
\ ¥ 4 ® O ¥ : sypark@ics.kaist.ackr
® S| 0|X| : https://ics.kaist.ac.kr/
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St MAtE2 A2 e Hoto 2 EAM MEEE StESHY| 2o §-23 M50 Ct
T WA HAZ EUStD 4 E M o w2t WA A HIojlH MEES S
Moz MEHS= X E KN CHSHCE M=l A|AEIZ BPSK, APSK, 4ASK BIZE X|l5IH,
ME MENZF Lot 42 O 300 kbpsl| -3 HOJH MEES FHSIHAZ HE
REZ(BER) 10° =F9| MEEE {X|et2 AyHoZ HILC} o|zfst M2 =30t M
HES SHHOAM HME = A= MY 72t CHEY0| TSSIHME, 7[&E A2 2o Of

7tsotA ottt AH™ Zaf 9F 5cm Z0]9

il

C 5
[Of %|CH 2F 192 pW == H™

A —
SIRAOMH, 4ASK HE 7|EC 2=

Conventional: alternating ultrasound downlink and backscatter uplink
'lc'llﬁ\gesr- Pgwer-lglalza ol t/ lpwr: determined by loading demands
mplan
| —Swmnk P ———[ Power RX & data RX |
Vo N Ao L lewr o
1 '.) TR - # Challenge: conflicting transducer
'  ° — T I termination requirements
Data uplink Trans- >
® Low effective data rate ducer { il S 1
g Iéowkave[c?gel PtOWG" delivered lrx: determined by uplink data backscatter
&) Backscatter latency

This work: simultaneous ultrasound downlink and backscatter uplink (adaptive)
Continuous powering

E’j‘é‘g; lin ﬁ 4 Implant = Power RX
o ] Vaux
| | Single-stage US [Veee

7
Q AL power regulator
VI VYTV VV VT YTy A
ontinuou Single
backscatter uplink transducer ]
Data mod. DL eval.

1
1
: I E d —H P .
| | ncoder akap;ilvewr eva
T 75mm N : —| Modulator | | Decoder |
|

System mock-up

© Continuous/simultaneous power and data © Adaptive modulation
-> higher, continuous power delivery - better BER vs. data rate trade-off
- lower latency, higher data rate w. lower pJ/b  © Single US transducer at implant

Fig. 1. Motivation and proposed simultaneous ultrasound downlink
(power and data) and backscatter communication system.

[A8 1] SAIH =30 FUHEEE 3 HolH S 7|82 /E=

L2
o
ot
o

#4-4 =22 THYCOHstm, KAIST X M2Cistmrzt % G2, AZt 2t X3

(Temporal Interference Stimulation, TIS)2 CHHEE 2ESH JHE R multi-TISS| +& ICE
MOtstCE TIS = ME 28t Fht+E #e IF0 W7 8FE S HE ZEOAM
MZFOb Z=M(envelope)E2 BEELEM, EH X=2 ZAZSHM HE & XA=2
7tsStAl St HIEESH MEZE 7I”O|CE 2L, 7|EL TIS AAHEEZ HoHE X2
o B2 MY, ME 7t ELXE Qg X= S7H MEHEO| FESHA| el EE
gl = Che ©F 0|y 7[8t 2|20 SETC 2N =Edat HEEOo| A7 JAACE



MA=2 olgst EHME si&st?| s DY =7
TXE KHEdSE 12KED multi-TIS E2FO|H ICE H|OtstLt
=]

HHA OfH| 3 Y-2=(PVT) 3o Zolshn,

~
rII

TS (source-sink)
= 7|1& ©&F 0y

o ArQlm HEje

=
ro
r
mo -4 rA
B

0%
™
dn
4]
O

S{Ef©
A= MzE O 22 M2 dde &= ACh 2 ME2 MHY DAC oM HMEl
HEUDH AQlm M= E WY Yoz FFES MIF0| QIR EMN, CHYsh £t
ZHNME SF MR =2 XY = JAZF GAEJACE =3t 2 =20Ms e
7 Ol % M EYUX=E Qs HMSE X5 HFZ2 EFSH7| fIst 3 EHA
28 (calibration) 7|#E HetsiCl HFEE £ mdg 7|ELE TUE 8 ZISRE
QXE FEotu, Olof U8t BEF IAEE CXEXo=z HgmozM e 7t
2YXE BMHSE HMAHCE OlF & CHE TIS & Aoz =ZEM Az9
=S xaztstn, Moz Hot FUsH 7Y IHEH HYO| s 2Lt

AMS AT HOHE IC= 180 nm BCD 2™ E HZE LYol X|f +20 VO &3 MY
HRAOM KEY ECH £2 mA O X5 HMFRE AFIHSE ASSJUCL 15 kQ Fo}
ZZAOM 1 kHz X= A| SFDR 62 dB, SNDR 60 dB, THD 0.119%S EA3lgom, 2
Ol & 2Xh= 1% 0|22 ZASHRACE Eot 8 ME multi-TIS T30lA T TIS
CHH| oF 25% o=l 37t MEHMES QIO 2N, HMOtel #x7F MR & HYZ 2ot
FAMOE K58 = UZTS HYHCE YBSALCt

-
/a1 (sec) . D
Carrier frequency (1), beat frequency (A1) Carrer frequency (1) (a1 Spatial selectivity t > 1/2f (sec)

“DC curent™ ) A curent = -
® Low spatial selectivity ® Low spatial selectivity ® Middle spatial selectivity © Multi-electrods - high spatial selectivity
@ Limited tion @ Limited penetration © Allow deep brain stimulation || © Allow deep brain sti
@
Previous TIS driver IC (current mirror) [9]
@ Low linearity «—— Vunerableto APVT ~«— Separated source circuit > Electrode T Non-acti "
Swiching noise __ APVT induced disortion Separated sink circuit i e ? 1§m've-
— iy « Total electrode:
T _ Ig:g YV fle : & * Max. active electrode: 4
Switching e JAWA! lohy 2200 —" H oo
noise SR VAV |
lo lo »
Switching noise Norlinear

o

lo summing 4 = —oo=
with switch 22 lnAc oo
operation DAC :
@ Low linearity (seperated squrce&smk circuit—vulnerable to PVT variation)

® Low linearity (switching noise)
® Low spatial selectivity (Max. active electrode: 4)

O
@ Low spatial
selectivity

Proposed multi-TIS driver IC

i a — FETTa— o ...wEecode .
Switching noise X '© High hnear}ty Insensitive to APVT ; Non-active © _Active @
4 Amplifier based architecture ! + Total electrode: 12
lo generated without integrated source circuit & sink circuit 4~ * Max. active electrode: 12
switch operation i—————
4 Vewmrer Brain
Voae NN\
Vo /\A/ Data | f Channel i =)
| logic ? 4|  ©High spatial
o u — ) selectivity

© High linearity (integrated source&sink circuit—insensitive to PVT variation)
© High linearity (amplifier-based architecture—no switching noise)
© High spatial selectivity (Max. active electrode: 12)

(b)
Fig. 1. (a) principles of tDCS, tACS, TIS, and multi-TIS, (b)
comparison between previous and proposed TIS driver IC.

(A8 2] MetEl BotE AlZh-Zhd A= 7|(multi-TIS) #&2l22] g =
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Sttty |sd W7IAEASSE Hetseity 871Y

Session 16 Visual Interactive System

28 ASSCC session 160{= 37 image sensor =&1} 1742| capacitive E{X|/lIA =Z0]
27| ICEH O|O|X|dA 2O = FHAE2Z PIS(processing-in-sensor), LiDAR, SPAD-
PPD hybrid image sensorZt 27020 XY 7t 2Us| AT U= 201 =25
olct. Z =22 A& oHX| & &4H(16.1), background immunity 2&f(16.2), T 7
& 283t A dynamic range E4(163)2 SRESH MME HQtotCt

#16-1 National Tsing Hua UniversityO A ZHESH =222 128x128 dual-resolution
processing-in-sensor (PIS) +Z&E A 2t5tH, optical-flow 7| motion processing0| 244
O|Ct ZIME 7|&0 Z2 JAE0M ZHEJAH 6T1C PWM TFEE TEE0 U2H, T

2 = LHOIA raw image, temporal gradient, spatial gradientE SA|0 2% &= U

T & otCt Spatial gradient @42 AE CHO| FAE low-power, area-efficient
combinational logic® Sl $=235IH 7|ZE2] OPAMP-based 2 adder-based subtractor
O =2 OHX| 222 Fdotth. ESH 3x3 binning 22 FI156HY Mfd =
optical-flow pyramid Y2 T MMM dHe = 0, F Z2MAM| AL £E
2 £Y £ AUt w2t H el A= 9-bit raw image, temporal/spatial gradient, 3x3
binning2 2% X|SIHAEZ 30fpsOlAl 198.44 pwe| Of R =2 MHZ ZHsict

e e e e e L P P L L LT .
Tafe | pwmpel 1 Pumpiel i Puipiel | [Grad. Circuit H
= ALIL I kernel 1 Puc | Py I Pur Vo1 Vowy RSTsigH :
= Pixel A 0]o]o 1 s
3 1 Ixel Array 1]0]-1 1 ’ P | Pc I Pr |K lysign
= 128x128 0]o]o : y 1
& ly kernel 1 ‘ Pou | Po | Por pr,Rlew,D 1 :
0j1)0 : Re-order Cireuil,” | | Re-order Gircuit” | \Re-order Circuit,” ; Examples for ly and |y sign: 1
i T EE! 0j0j0 1 3 3 3{ Vowy < Vpwd Vpwu > Vpwp :
LAl 1 ' N4 Vows 1 Vewu 1 H
-3 ' 1 Grad. Circuit Grad. Circuit Grad. Circui: pru T pru ) S 1
S £ Spatial FaeForh 020 L WL b21) 51 R L I B |
g’ g N Gradient Circuit i ) : coL<n-1> coL<r> COL<n+1> lysigln "1 lysign 1
o 3 by 3 binning down resolution to H s Ty :
support pyramid optical flow 1 column- H
EEY 3 33y St > | Pwm,?q IT( shared H
. t |ayer low-res. 323 pixels 1

@ . P . ]
s go ! 3'3 Binning Circuit coarse optical flow 1 Vouls | [Counter :
: |d|s Or KQ\NT < :
2 T 24 [ayer high-res. 1 H i
=3 Column refined optical flow ! RSTon cmn - -
sL Counter & Latch : Ve 1
25 = = — e H
a8 ; Vopi Reset 1
Column Selector 3 : Bnlmm‘g lire .gpw,(dﬂ\ - o chw_hin - ;pw‘hin - Ilmt:gbm Conversion 1
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Hybrid Pixel Array 528 x 264 Multi-bit Analog Photon Counting (MAPC) // Low Light
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Session 24: Advanced Circuits for Memory and Sensing
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Multiple Sensor Fusiun\ Conventional Sensor Interface Circuit
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Session 26 Circuits and Systems for Quantum and Security
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398bit-based, Quad Core Architecture with PCle Connection

i Ctrl BRAM
_ Main Controller (2KB)
Hel gl | f =
SEF
v} o] o Main |ms ;
o 2 g BRAM |~ Fp2 calc unit
3 =™ | (25KB) c
= A g LA B Fp addsub m
]._ o ® 6 (6KB)
h - na Fp 5-stages
Core montgomery
— cache multiplier
(6KB) (630 DSP) |

« All datapaths and I/O values use data widths that are multiples of 398 bits.
+ Each module has a controller and ERAM, and wraps a lower-level module.

Three Levels of Computations Fundamental Fp and Fp2 Calculation
Fp aberp Fpy omtin Geme P
ADD | a+b modp (@r + ) +i- (2 +w) modp
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MUL axb modp (Tr ¥ —Ti-w)+i- (T pi+xi-y) modp

Quadratic Field INV a'xa=1 modp | &' =(z —i-2) (£ +2?)"7 modp
Finite Field a, b & Fp are 398-bit values, and x, y & Fp*® are 796-bil values.
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